Fusion Propulsion Technology for Interstellar Missions

Robert Swinney BSc MSc² MIET FBIS CEng RAF (ret'd) Fellow British Interplanetary Society Member Icarus Interstellar, Inc Director Initiative for Interstellar Studies, Ltd

> Interstellar Exploration Workshop – ESTEC 20th June 2019

MSc Avionics and Flight Control Systems (Cranfield)

MSc Radio Astronomy (Manchester – Jodrell Bank)

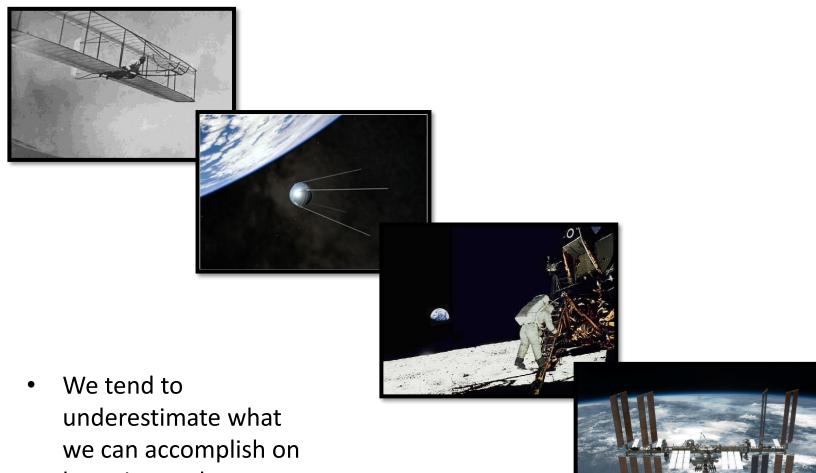
BSc Astronomy and Astrophysics (Newcastle upon Tyne)

University studies all in the 1980s!

Royal Air Force Squadron Leader

- Engineering Officer
- Aerosystems (primarily Avionics)

Independent Consultant – Space Industry


Scope

- Background
- Project Daedalus/Icarus
- Other Fusion Options
- Other Options
- Summary

British Interplanetary Society

Y

Long term thinking

long timescales.

Ideal Rocket Equation

 $\Delta v = v_{ex} Ln\left(\frac{m_o}{m_f}\right)$

Konstantin Tsiolkovsky Formulated the "*aviation formula*" in 1887

Interstellar Precursor Probes

P10

~13km/s, 2.6AU/year, Mar 72

P11

~12km/s, 2.4AU/year, Apr 73

V1

~17km/s, 3.6AU/year, Aug 77

V2

~17km/s, 3.3AU/year, Sep 77

NH

~18km/s, 3.8AU/year, Jan 06

Why Fusion?

• Believed to give: 10⁷ Fusion High Isp/Vex
 Proven science & near term technology -High Isp/Vex 10⁶ 10 kW/kg 1 kW/kg 0.1 kW/kg 10⁵ Nuclear (fission) Gas-core fission electric 10⁴ -But Low T/W Chemical 10^{3}

Nuclear

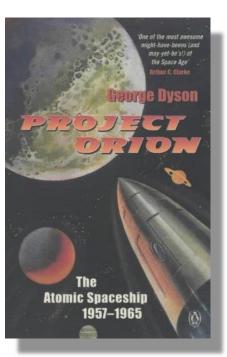
thermal

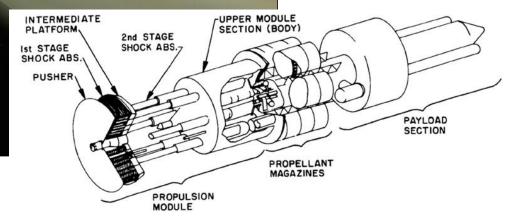
10

1

10⁻³

10⁻²

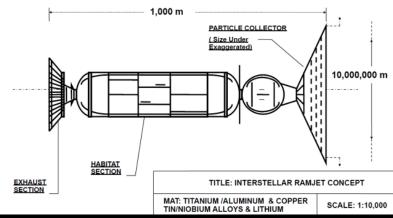

Thrust-to-weight ratio


10⁻¹

10⁻⁴

10⁻⁵

Project Orion (1950s-1960s)



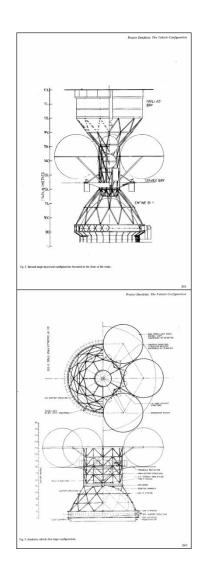
States

Interstellar Ramjet (1960)

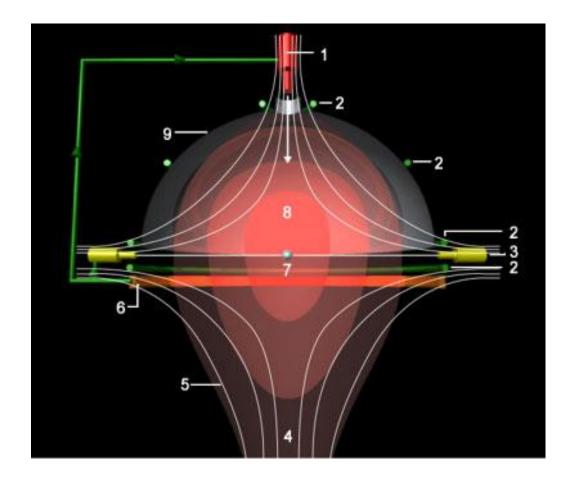
Bussard, R.W, *Galactic Matter & Interstellar Flight*, Astronautica Acta, 6, pp.170-194, Fasc.4,1960.

Bond, A. An Analysis of the Potential Performance of the Ram Augmented Interstellar Rocket, JBIS, 27, 9, pp.674-685, September 1974.

Project Daedalus


Project Daedalus

Fusion Spacecraft Design study


- Considered the challenges of

interstellar travel

- Used current/near-future technology
- Reach destination within a human lifetime
- Allow for a variety of target stars

Inertial Compression Fusion – Daedalus style

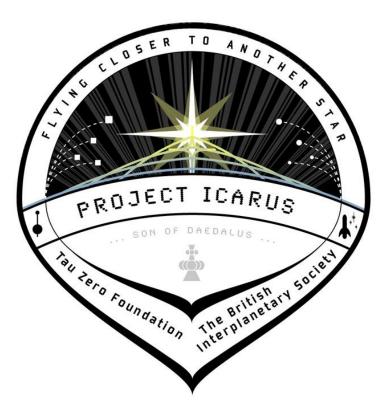
http://www.bisbos.com/space_n_daedalus_prop.html

1 Pellet injection gun 2 Superconducting field coils (4) 3 Electron beam generators 4 Plasma exhaust jet 5 Magnetic field 6 Energy extraction coils 7 Frozen nuclear pellet 8 Nuclear explosion 9 Reaction chamber

> Copyright: Adrian Mann © Bisbos.com

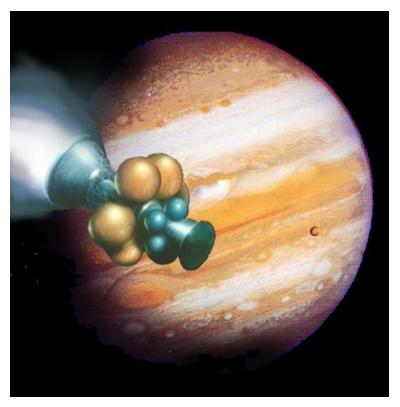
Challenges for Daedalus

- Pellet trajectory
- Electron beams
- Tritium trigger
- Firing rate
- Pressurant Mass
- Fuel DHe3



Project Icarus

British Interplanetary Society initiative originally in collaboration with Tau Zero Foundation



Purpose

- To design a credible interstellar probe that is a concept design for a potential mission
- To allow a direct technology comparison with Daedalus and provide an assessment of the maturity of fusion based space propulsion
- To generate greater interest in the real term prospects for interstellar precursor missions
- To motivate a new generation of scientists to be interested in designing space missions that go beyond our solar system.

Case Study: Fuel Acquisition

- Daedalus mission to mine He3 from the atmosphere of Jupiter
- Alternatives include
 - Solar wind
 - Asteroids
 - Comets
 - Accelerator
 - The Moon
 - Other planets or moons

Planet	Jupiter	Saturn	Uranus	Neptune
Distance (AU)	5.2	9.5	19.2	30.1
V _{escape} (km/s)	59.5	35.5	21.3	23.5
Atmosphere *	89%H, 10%He	95%H, 3%He	83%H, 15%He	80%H, 19%He

Early Thinking

- Daedalus and payload were too massive
- Jovian gas giant mining not ideal and would likely necessitate wide scale solar system economy first
- Pulse frequency too high
- Flyby not useful compared to future solar system based observations
- Also competing views
 - Eg Fast cruise (0.15-0.2c) versus slow cruise (<0.05c)
 - Eg Early design decisions versus late design decisions
 - Eg Massive space based infrastructure versus moderate infrastructure
 - Eg Flyby versus complete deceleration

Icarus Interstellar

Alaska Entity #: 133623 State of Alaska Department of Commerce, Community, and **Economic Development** Corporations, Business and Professional Licensing CERTIFICATE RECEIVED MAR 0 7 2011 OF PATTON BOOGS LLP INCORPORATION Nonprofit Corporation THE UNDERSIGNED, as Commissioner of Commerce, Community, and Economic Development of the State of Alaska, hereby certifies that Articles of Incorporation duly signed and verified parsmatt to the provisions of Alaska Statutes has been received in this office and have been found to conform to law. ACCORDINGLY, the undersigned, as Commissioner of Commerce, Community and Economic Development, and by virtue of the authority vested in me by law, hereby issues this certificate to Icarus Insterstella and attaches hereto the original copy of the Articles of Incorporation for such certificate. IN TESTIMONY WHEREOF, I execute this certificate and ix the Great Seal of the State of Alaska on February 4, heckBell 0.0000000000000000

Concept Design Competition

- Key parameters propulsion system and fuel
- Concept Design workshop 9 months later at the BIS HQ

a the spacecraft, *E* is the encry release per deton can then be multiplied by a **Project Icarus – Resolution**

ximate debris ex

s given by

lius of the canopy debris cloud per detona

 $r = t \sqrt{\frac{10E_{particle}}{m_{unit}}}$

he approximate energy of the explosion per a

canopy is given by:

$$m_c = \frac{25}{12\sigma_{max}}\sqrt{\frac{\rho_s Y m_b E}{5}}$$

ensile strength, Y is the Young's Modulus of elas

gram

as some basic estimates of the number of Single struct the dry vehicle mass (structure + payloa hicle carries 10 tonnes to LEO at a cost of £650 vehicles required, the total assembly launch cos
 Total Mass Ratio:
 40.1273727

 Total cruise velocity (km/s, %c):
 36985,7578
 12.3371210

 Total cruise distance (m, AU, LY):
 5.38079301E+16
 359678.688

 Total cruise duration (Years):
 46.1323051
 1

 Total mission duration (Years):
 9.9483986
 373107.969

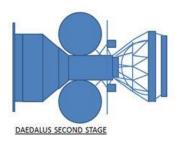
 Itission Distance (m, AU, LY):
 5.58169483E+16
 373107.969

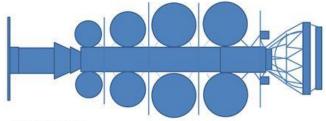
ENCOUNTER: -

20.0000

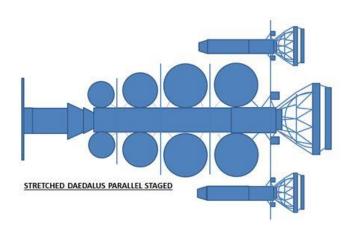
 RAJECTORY DATA BELON

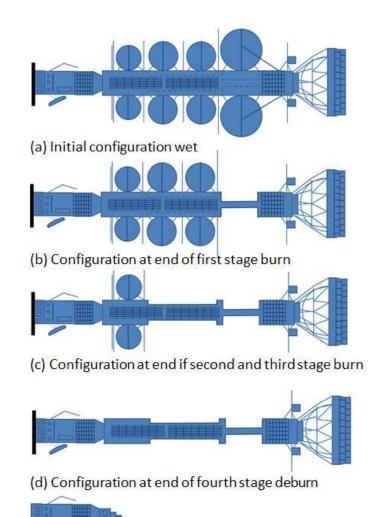
 Time(Years)
 Distand

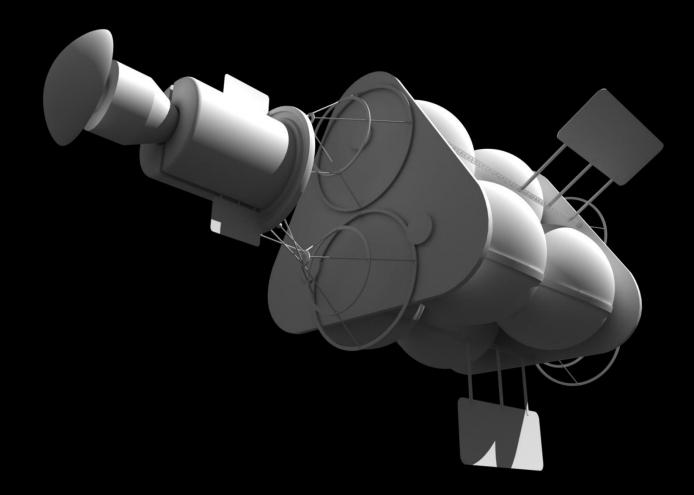

 49.9483986
 37310

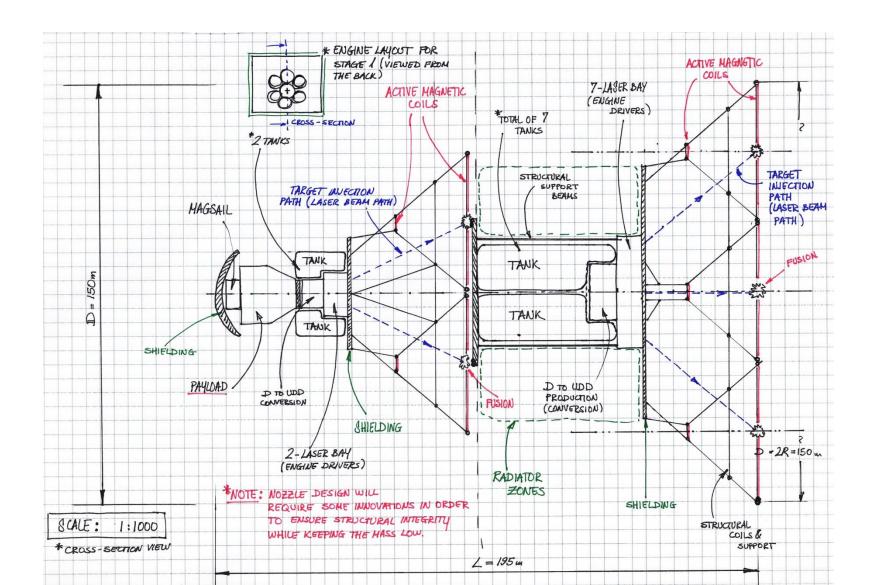

 3.81609249
 13425

 3.72800970
 12918


 3.6390501
 12408


Resolution


STRETCH DAEDALUS



(e) Configuration at Stellar Exploration Phase

Project Icarus – UDD Concept

UDD Concept

UDD Concept

- Advantages:
 - Circumvent compression stage, allows direct ignition (absence of hydrodynamic instabilities and reduced plasma-laser interaction consequences).
 - Single PW-scale laser ignition reduces the system complexity, mass.
 - Gains depend solely on the size of the target.
 - Uses D and converts it to UDD on-board; D is abundant, stable, non-toxic and magnitudes cheaper to produce than i.e. ³He.
 - Allows for multi-engine, modular design which greatly increases overall system robustness and reliability,
- Disadvantages:
 - Is UDD real?
- IF it is: could be a winner.

lium contains dust grains, which examum cruising velocity of In order to forestall, the

Project Icarus – Ghost

Time (1000 Years)

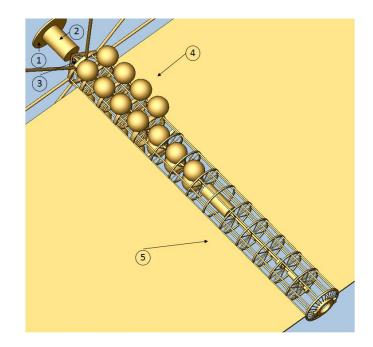
- Matter density
- Speed of light c in
- Velocity of the

- Fraction of energy η [-]
- $A_{2} = v_{1}$ Projected frontal area $A_{0} [m^{2}]$
 - Latent heat of sublimation of the materia

low the needed shield mass that a set of the

nd the shield thickness $t_{\it Shield}$ with ,

HONTS: LESIGN: GHOST VEUS SION SYSTEM: TAVIT BOTH GO ON BOTH


(C) MARUS 01

3RI

Basic Characteristics

Characteristic	Selection / Value		
Fusion stages	1 for acceleration & deceleration		
Decelaration propulsion	Magnetic sail		
Fusion scheme	Deuterium – Deuterium		
Fusion Isp	540,240 s		
Mission duration	100 years		
Overall mass	153,940 tonnes		
Payload mass	150 tonnes		
Dry mass	3351 tonnes		

Configuration

- 1. Dust Shield
- 2. Payload
- 3. Magnetic Sail
- 4. Tank Sections
- 5. Radiators

Revised Ghost Mission Design

- Optimum via Trade Space Analysis
- Duration = 118.5 years

	Acceleration	Cruising phase	Deceleration MagSail	Deceleration fusion	Target system operation
Distance	0.37 ly	3 ly	0.02 ly	0.0024 ly	-
End velocity	5% c	-	3470 km/s	150 km/s	-
Duration	25.63 y	56.43 y	36 y	0.229 y	-

Revised Ghost Mass Budget

Spacecraft element	Mass
	[mt]
Tank mass	927
Payload mass	150
Sub system mass	4670
Magnetic Sail	1785
Truss structure	200
Dust shield	15
Power	20
Communication	40
ADCS	40
Tritium production (deceleration)	95
D/T tanks, pellet manufacturing, transport	20
Radiators	2500
Fusion engine mass	11144
Laser system (Laser, Sphere, Light Tubes, Ampl.)	1000
Coils	500
UO2	9537
Neutron shield	82
Accelerator	25
<u>Spacecraft dry mass</u>	7444
Propellant mass	247100
Acceleration	242,500
Deceleration	4600
Spacecraft total start mass	263991

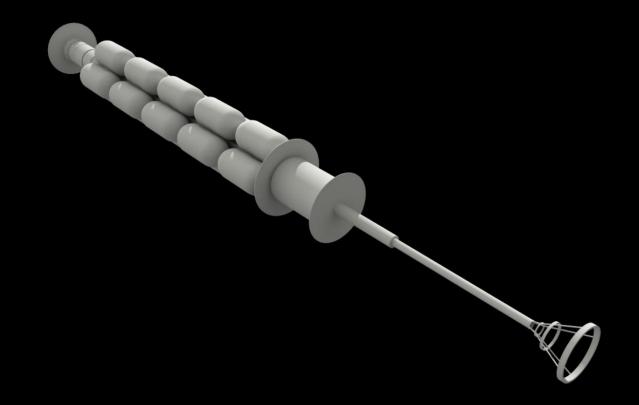
PROPULSION: PLASMA JET MAGNETO-INERTIAL FUSION - ZEUS

The PJMIF propulsion model is a 3 stage system without any moving parts, relying largely on magnetism to produce and direct a nuclear fusion reaction.

The key structural components are a near-parabolic nozzle, 150 plasma jet rail guns, 2 theta pinch guns, and a system of superconductor coils.

PJMIF uses these components to form a plasma pellet, pressurize it with a liner until fusion occurs, and evacuate the reacted particles by means of a magnetic field.

This process has the potential to produce unprecedented amounts of thrust.



AN INTERSTELLAR VOYAGE TO ALPHA CENTAURI

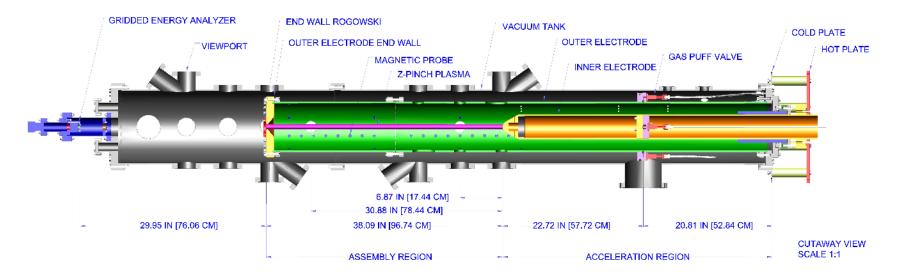
CREATED BY: THE PROJECT ICARUS TEAM @ DREXEL UNIVERSITY PRESENTED BY: ZACHARY BLOCK, JOHN BRESLIN

DAVID EVINSHTEYN, DAMIEN TURCH

Project Icarus - Firefly

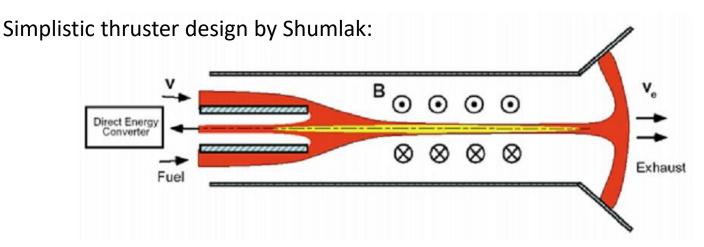
Natural Pinches

Pinches occur naturally, with the most familiar being lightning.



The copper tube at the right (currently on display at the School of Physics, University of Sydney, Australia) was studied by Pollock and Barraclough in 1905 after it was struck by lightning.

Shumlak's ZaP Experiment


The ZaP Experiment was constructed in Shumlak's lab at the University of Washington to confirm that sheared flow really does stabilize a Z-pinch.

The ZaP Flow Z-Pinch Experiment

Image courtesy of Sean Knecht, UAW (2008)

Basic Z-Pinch Thruster Designs

Slightly different design from NASA's Marshall Space Flight Center:

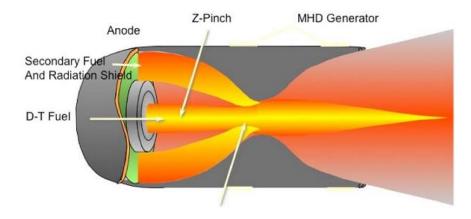
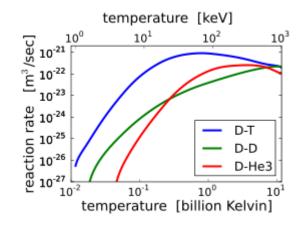



Image courtesy of Marshall Space Flight Center (2000)

Most Updated is Firefly

Fuel Selection: DT vs. DD vs. DHe3


The three most commonly studied fusion reactions are as follows, ranked in order of difficulty:

D2	+	Т3	?	He4	(3.49 MeV)	+	n ⁰	(14.1 MeV)
D2	+	D2	?	He3	(0.82 MeV)	+	n ⁰	(2.45 MeV)
			?	Т3	(1.01 MeV)	+	p+	(3.02 MeV)
D2	+	He3	?	He4	(3.6 MeV)	+	p+	(14.7 MeV)

DT is the easiest, but it releases most of its energy in fast neutrons that aren't usable for thrust. Tritium has a very short half-life anyway.

DHe3 is often considered as an alternative because it releases only charged particles, but unavoidable DD reactions generate neutrons anyway. And we can't get He3 here on Earth.

So Firefly uses **DD** fusion.

Waste Energy: Neutrons & X-Rays

DD Fusion generates a LOT of waste energy:

➤ Half of DD fusion reactions release a 2.45 MeV neutron.

➤ The other half of DD fusion reactions release a Tritium, which immediately reacts with Deuterium in the plasma to produce a 14.1 MeV neutron.

Shielding these fast neutrons typically spawns energetic EM rays.

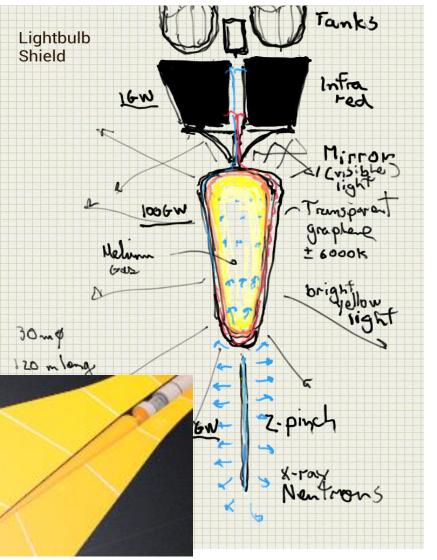
Heating of electrons in the plasma produces Bremsstrahlung radiation, which is released in the form of X-rays.

Shielding any significant portion of this radiation would add prohibitive mass to the vessel, but an alternative is to **design the vessel so that most of this radiation escapes directly into space**.

The challenge is that X-rays easily penetrate low-Z materials (which lack the large electron clouds), while neutrons easily penetrate high-Z materials (in which the nuclei are widely spaced by their electron clouds).

Firefly Engine

											\mathbf{X}	/	20-						
A B	C	D	F	F			1	1		6					Q	R	S	т	I U
Time-Lapse Z-Pinch Fusio		5	-				//							_	<u>u</u>	IX.	0		
2 Describes the mathematics of the Z-p		on and calculates radiation fluxe	e on various	narts of th								11		_					
beschbes the mathematics of the 2-p	inch fuar	sin, and calculates radiation maxe	3 on variou.	purto or th						× W		1		_					
Assembly Region					F		11				11 1					KEY RE	SULTS		
Assembly Region Length	La	1	5.00	m			11				7				Debris Velo		11.728	km/s	-
6 Inner Electrode Tip Radius	R _{et}	-	0.25		le le										Exhaust Ve		10.010		-
7 Inner Electrode Base Radius	Reb	R _{et} + L _a /10	0.75												Specific Im		- 10 C	million s	
Slope of Electrode Wall	α _{ew}	atan((R _{eb} -R _{et})/L _a)		degrees											Thrust	puise	0.435		
MPD Thruster Plume Divergence	β _{MPD}	atan((i teb i tet/ La)		degrees											Waste Ener	av	201.4		
0 Input Plasma Layer Thickness	PMPD h	$(L_a^2 + (R_{eb} - R_{et})^2)^{1/2} \tan(\beta_{MPD}/2)$	2.62						1	7					Mass	97		tonnes	
Height of Truncated Tip of Plume	x ₁	$(L_a + (R_{eb} - R_{et}))$ $tan(p_{MPD}/2)$ $R_{eb} / tan(\beta_{MPD}/2 - \alpha_{ew})$	1.88												Mass Thrust:Weig	abt Datic		N/tonne	-
2 Height of Truncated Tip of Electrode		$R_{eb} / tan(p_{MPD}/2-\alpha_{ew})$ $R_{et} / tan(\alpha_{ew})$	2.50												Charged Pa	•	2.16	witonne	
3 Input Plasma Volume	X2	$(\pi/3)((L_a+x_1)(h^2-R_{eb}^2)-x_2(R_{eb}^2-R_{et}^2))$	43.91					2/	1						charged Pa		2.10		-
	V _a	(11/3)((La+X1)(IT-Keb ⁻)-X2(Keb [*] -Ket [*]))							11										-
4 Input Plasma Temperature 5	Ta		10,000	n.				1	1										
6 Pinch Segment Length	L		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	m
7 Distance Down the Pinch	D		0.00	5.00	10.00				30.00	35.00	40.00	45.00	50.00	55.00	60.00	65.00			
Burnup Fraction Achieved	f _b	•	0.128	0.263	0.368	0.453			0.625	0.663	0.696	0.724	0 748	0.769	0.787	0.803	1	10.00	
	10		0.120	0.200	0.000	0.100	0.022	0.010	0.020	0.000	0.000	0.121	0.110	0.100	0.101	0.000	0.011		-
Plasma Species								Evolu	tion of the	Plasma Dov	wn the Len	gth of the P	inch						
1 Hydrogen Ions	NH		0.00E+00	1.40E-	+20 -							.					Ð	1.92E+19	1
2 Deuterium Ions	Np		1.30E+20			_												2.38E+19	
3 Tritium Ions	NT		0.00E+00	1.20E	+20												I Helium4	1.47E+18	
4 He3 lons	N _{He3}		0.00E+00	1.00E-	+20												Helium3	7.58E+18	
5 He4 lons	N _{He4}		0.00E+00	2 8.00E											_		I Tritium	2.94E+19	
6 Li6 lons	NLi8		0.00E+00	8.00E	+19	10											Deuterium	0.00E+00	
7 Li7 lons	NLI7		0.00E+00	6.00E	+19 🗕 🗤 –			_					_				h	0.00E+00	
8 Total lons	Nt.		1.30E+20	 4.00E-	10	10		10 B									Hydrogen	8.14E+19	_
9	i vi		1.002120			100	10 C	1.0	1997 - Barrison Barrison († 1997) 1997 - Barrison († 1997) 1997 - Barrison († 1997)	1.0							F	0.142113	-
0 Average Atomic Number	Z	$\Sigma_i (Z_i N_i) / N_t$	1.00	2.00E-	+19 🗕 🖉												4	1.45	
1 Average Ion Mass	m	$\Sigma_i (m_i N_i) / N_t$	3.34E-27	0.00E-	+00												7	4.33E-27	
2		and decision of the second sec			1	2	3 4	5	6 7	8	9 1	10 11	12	13 14	15	16	- F		
3 Pinch Region				L															
4 Linear Number Density	N		2.60E+19	2.52E+19	2.36E+19	2.24E+19	2.13E+19	2.04E+19	1.97E+19	1.90E+19	1.85E+19	1.80E+19	1.76E+19	1.73E+19	1.70E+19	1.67E+19	1.65E+19	1.63E+19	ions/r
5 Axial Flow Speed	Vz		500,000	508,222	524,169	538,215	550,469	561,135	570,424	578,531	585,626	591,859	597,357	602,227	606,559	610,429		617,025	m/s
6 Particle Flow Rate	nd		1.30E+25	1.28E+25	1.24E+25	1.20E+25	1.17E+25	1.15E+25	1.12E+25	1.10E+25	1.08E+25	1.07E+25	1.05E+25	1.04E+25	1.03E+25	1.02E+25	1.01E+25	1.00E+25	ions/
7 Mass Flow Rate	md		0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043			kg/s
8																			
Pinch Current	1		4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	MA
Pinch Temperature	Tp	μ ₀ l ² / (8πNk _B (1+Z))	100.9	102.5	106.0	109.3	112.4	115.1	117.6	119.8	121.8	123.6	125.2	126.7	128.0	129.2	130.3		keV
1																			
2 Pinch Volume	Vp	Va [CpNTa(1+Z)] ^{3/2} / I ³	1.10E-06	1.07E-06	1.02E-06	9.72E-07	9.33E-07	8.99E-07	8.71E-07	8.47E-07	8.26E-07	8.08E-07	7.93E-07	7.79E-07	7.67E-07	7.56E-07	7.47E-07		m ³
B Pinch Cross-Section	Ap	V _p /L	2.19E-07	2.14E-07	2.03E-07	1.94E-07	1.87E-07	1.80E-07	1.74E-07	1.69E-07	1.65E-07	1.62E-07	1.59E-07	1.56E-07	1.53E-07	1.51E-07	1.49E-07		m ²
Pinch Radius	а	$(A_p/\pi)^{1/2}$	0.264	0.261	0.255	0.249	0.244	0.239	0.236	0.232	0.229	0.227	0.225	0.223	0.221	0.219	0.218		mm
5 Pinch Volume	Vp	πa ² L	1.10E-06	1.07E-06	1.02E-06	9.72E-07	9.33E-07	8.99E-07	8.71E-07	8.47E-07	8.26E-07	8.08E-07	7.93E-07	7.79E-07	7.67E-07	7.56E-07	7.47E-07		m ³
6 Number Density	np	$N/A_p = N_t/V_p$	1.19E+26	1.18E+26	1.16E+26	1.15E+26	1.14E+26	1.13E+26	1.13E+26	1.12E+26	1.12E+26	1.12E+26	1.11E+26	1.11E+26	1.11E+26	1.11E+26	1.10E+26		ions/r
7	. · · ·																		


Firefly Engine

rescribes the mathematics of the Z-	pinch fus	ion, and calculates radiation fluxe	s on various	parts of the v	/essel.						
Ionization Power	PΩ	l ² η L / πa ²	12	13	13	14 15 15 16	16 16 17 17 17 17	18	18	234 GW	
Thermal Power	Pth	3n k _B T v _z πa ²	630	10	21	19 17 15 13	12 10 9 8 24 22	20	18	849 GW	
Flow Power	P _{flow}	$0.5 \text{ m}_{d} \text{ v}_{z}^{2} = 0.5 \text{ m} \text{ n} \text{ v}_{z}^{3} \pi a^{2}$	5							5 GW	
Radiative Power	Prad	(1.69e-38) Σ _i (Zi ² Ni) n _e Te ^{1/2}	83	91	_			183	186	2,190 GW	
Input Power	Pin	Pth + Pflow + Prad	719	101	_	Deuterium	Radiator	202	203	3,044 GW	
						Fields and Fields and and	이 잘 해 있는 것 같은 것 같은 것 같은 것 같이 같이 같이 많이				
Charged Particle Gain	Q _{ch}	P _{ch} / P _{in}	0.5	6.9			A 5 ~	1.2	1.1	2.2	
Fusion Gain	Q	P _f / P _{in}	0.7	16.4		CI OTA	Farth For 2 2 1	1.8	1.6	3.9	
Burnup Fraction	fb	$E_f / E_{fmax} = 0.5 \text{ n} < \sigma v >_{DT} L / v_z$	0.128	0.263		I PK		0.803	0.817	0.817	
Radiation Fluxes						noton					
Distance Segment to Assembly	Da		2.5	7.5				67.5	72.5	m	
Distance Segment to Hot Tank	Dt	D _a +L _a	7.5	12.5				72.5	77.5	m	
Distance Segment to Shield	Ds	D _t +L _t	187.5	192.5		y July pup	r r	252.5	257.5	m	
Distance Segment to Nozzle1	D _{n1}	$((D-D_a)^2 + R_{n1}^2)^{1/2}$	72.7	67.7				9.0	5.6	m	
Distance Segment to Nozzle2	D _{n2}	$((D-D_a+D_{n12})^2 + R_{n2}^2)^{1/2}$	100.7	95.8				41.0	37.2	m	
Distance Segment to End of Fin	D _f	(D-D _a)+D _{n12} +D _{tail}	137.5	132.5		Compressor 1		72.5	67.5	m	
Little bo bognon to Lite of thi		(= = a) Oniz Otali		.02.0		compresser 10	And and		01.0		
Angle Subtended by Electrode Tip	α _{et}	atan(Ret/Da)	5.7	1.9			1 (Q) Induction 7	0.2	0.2	degrees	
Angle Subtended by Electrode Base	α _{eb}	atan(R _{eb} /D _t) - atan(R _{et} /D _a)	0.0	1.5		i Co	1 Dr pump	0.4	0.4	degrees	
Angle Subtended by Hot Tank	α _t	atan(Rtb/Ds) - atan(Rtt/Dt)	0.0	0.0				1.6	1.6	degrees	
Angle Subtended by Shield	αs	atan(R _s /D _s) - atan(R _{tb} /D _s)	0.1	0.1		Insulated . PD		0.1	0.1	degrees	
Angle Subtended by Nozzle1	α _{n1}	atan(D _{nr} /D _{n1})	0.5	0.5		eipe 1		3.9	6.2	86.2 degrees	
Angle Subtended by Nozzle2	α _{n2}	atan(Dnp/Dn2)	0.3	0.4			support	0.8	0.9	31.0 degrees	
Angle Subtended by Radiator Fin	α _{rx}	π-atan(R _{n2} /D _f)	169.7	169.3			SUPPORT	161.0	159.7	degrees	
						TT X J JF W	A A				
Neutron Power on Electrode Tip		P _n * (α _{et} /π)	5.2	10.3				0.1	0.1	29.3 GW	
Neutron Power on Electrode Base		P _n * (α _{eb} /π)	0.0	8.2				0.3	0.2	27.3 GW	
Neutron Power on Hot Tank		$P_n * (\alpha_t / \pi)$	0.0	0.0			hot liquid	- 1.1	0.9	25.9 GW	
Neutron Power on Shield		P _n * (α _s /π)	0.1	0.4			distributor Lithium	0.0	0.0	2.0 GW	
Neutron Power on Nozzle1		P _n * (α _{n1} /π)	0.4	2.8		70 000 V	distribulor	2.6	3.6	28.4 GW	
Neutron Power on Nozzle2		P _n * (α _{n2} /π)	0.3	2.0				0.6	0.5	13.7 GW	
Neutron Power on Radiator Fin		$P_n * (\alpha_{rx}/\pi) * (\alpha_{ry}/2\pi)$	0.5	3.2				0.4	0.3	16.8 GW (x3)	
										177.1 GW	Waste
										_	Energy
Radiative Power on Electrode Tip		$P_{rad} * (\alpha_{et}/\pi)$	2.6	1.0				0.2	0.2	8.1 GW	37.4
Radiative Power on Electrode Base		P _{rad} * (α _{eb} /π)	0.0	0.8				0.4	0.4	7.7 GW	35.0
Radiative Power on Hot Tank		$P_{rad} * (\alpha_t/\pi)$	0.0	0.0			A	1.6	1.7	15.9 GW	3.5
Radiative Power on Shield		$P_{rad} * (\alpha_s/\pi)$	0.0	0.0		AA		0.1	0.1	0.8 GW	3.7
Radiative Power on Nozzle1		$P_{rad} * (\alpha_{n1}/\pi)$	0.2	0.3				3.9	6.4	22.0 GW	50.4
Radiative Power on Nozzle2		$P_{rad} * (\alpha_{n2}/\pi)$	0.2	0.2			tungsten Cathode Graphene Anode	0.9	1.0	7.3 GW	21.0
		$P_{rad} * (\alpha_{rx}/\pi) * (\alpha_{ry}/2\pi)$	0.3	0.3			timasten	0.6	0.6	7.0 GW (x3)	16.8
Radiative Power on Radiator Fin							100.90.0			45.8 GW	201.4

Firefly – Shielding

G

	A	В	C	D	E	F
1		irefly Shielding				
2	De	scribes the neutron and X-ray shielding	g.			
8						
9	Ho	t Deuterium Tank				
10		Length of Hot Deuterium Tank	Lt		180	
11		Outside Radius of Hot Tank Tip	Rtt		0.75	m
12		Outside Radius of Hot Tank Base	R _{tbo}	R _{tt} + L _t /20	9.75	
13		Slope of Outside Hot Tank Wall	α_{two}	atan((Rtbo-Rtt)/Lt)		degrees
14		Height of Truncated Tip of Outer Tank	xo	Lt Rtt/(Rtbo-Rtt)	15.00	
15		Outside Volume of the Tank	V _{to}	$(\pi/3)$ $((L_t+x_o)R_{tbo}^2 - x_oR_{tt}^2)$	19,403	
16		Outside Surface Area of the Tank	A _{to}	$(2\pi/3)((L_t+x_o)R_{tbo}-x_oR_{tt})+\pi(R_{tbo}^2+R_{tt}^2)$	4,259	m ²
17						
18		Spread of Deuterium at Base of Tank	Wd		1.00	
19		Inside Radius of Hot Tank Base	R _{tbi}	R _{tbi} - w _d	8.75	m
20		Height of Truncated Tip of Inside Tank	Xi	Lt Rtt/(Rtbi-Rtt)	16.88	
21		Inside Volume of the Tank	Vti	$(\pi/3)$ $((L_t+x_i)R_{tbi}^2 - x_iR_{tt}^2)$	14,482	m ³
22		Inside Surface Area of the Tank	Ati	(2π/3)((Lt+xi)Rtbi -xiRtt)	3,581	m ²
23						
24		Molecular Mass of Deuterium	mD		4.028	g/mol
25		Heat of Vaporization per Kg	ΔH _v		322	kJ/kg
26		Heat of Vaporization	ΔH _{vap}	ΔH _v m _D	1.298	kJ/mol
27		Boiling Point @ 101kPa	T ₀		23.32	K
28		Operating Pressure	Р		1,000	kPa
29		Boiling Point @ Operating Pressure	TB	1/(1/T ₀ - (R In(P/P ₀)/ΔH _{vap}))	35.44	K
30		Operating Temperature	Tt		50.00	К
31		Deuterium Gaseous Density	ρg	m _D P / RT _t	9.69	kg/m ³
32						
33		Volume of Deuterium Between Shells	Vd	V _{to} - V _{ti}	4,921	m ³
34		Mass of Deuterium Gas in Tank	M _{tc}	V _d ρ _g	47,687	kg
35						
36		Outer Tank Wall Thickness (SiC)	h _{two}			mm
37		Outer Tank Wall Stress	Î _{f two}	P R _{tbo} / h _{two}		GPa
38		Outer Tank Wall Volume	Vtwo	A _{to} h _{two}	4.26	m³
39		Outer Tank Wall Mass	Mtwo	V _{two} p _w	13,671	kg
40						
41		Inner Tank Wall Thickness (SiC)	h _{twi}			mm
42		Inner Tank Wall Stress	Ī∫ twi	P R _{tbi} / h _{twi}		GPa
43		Inner Tank Wall Volume	Vtwi	A _{ti} h _{twi}	3.58	m³
44		Inner Tank Wall Mass	M _{twi}	V _{twi} ρ _w	11,496	kg
45						
46		Total Mass of Hot Deuterium Tank	Mt		72,854	kg
47						
48	Ne	utron Absorption in Deuterium Tank				
49		Maximum Incident Angle of Radiation	α _{tr}	α_{tw} - atan(R _{tt} /(L _a +L _p))		degrees
50		Maximum Depth at Tank Base	WM	$L_t \tan(\alpha_{tr})$	7.31	
51		Average Distance Neutrons Travel in D2	xn	Lt Wd/WM	24.63	m
52						

Firefly - Radiators

A B	С	D	E	F	G	H		J	K	L M N O P Q R S
Firefly Radiators										
Describes the radiator system.										
NOTE: Based on the table above, the decision	was made	e to use Zirconium Carb	ide for the ele	ctrodes & mai	n piping. Pure	Carbon is use	d for the radi	tore themes	lvoc	Radiator Fin Profile
NOTE: Dased on the table above, the decision	was mau	e to use zirconium carb		ctrodes & mai	in piping. I ure	Carbon is use		atora themse	ivea.	140
Radiator Fins										
Number of Radiator Fins	Nr		3							120
Distance of Radiator Fin from Axis	Dr		25	m						P 100
Diameter of Fin Structural Element	d _{rp}		0.5	m						5
Angle Subtended by Radiator Fin	αη	atan(d _{rp} /D _r)	1.2	degrees						
Distance Fin Sticks Out Past Last Ring	D _{tail}		40	m						ê 60
										40 40
			Neutron	Hot D2	Central	Radiator	Nozzle	Nozzle		20
Waste Heat Loads			Shield	Tank	Electrode	Fins	Ring #1	Ring #2	_	20
Proportion of Fin Load Taken Here	σ					72.4%		27.6%	L	
Waste Power	W		3.7	3.5	72.4	36.5	50.4	34.9	GW	0 50 100 150 200 250 300 350
Safety Factor	ω		1.2	1.2	1.2	1.2	1.2	1.2		
Power to Radiate	Q	ωW	4.4	4.2	86.9	43.8	60.5	41.9	GW	241.7 GW
Mass Flow Rate	f _M	Q / ΔH_r	131	125	2,597	1,311	1,808	1,252	kg/s	
Overall Radiator Dimensions Radiant Temperature Reduction	-		50	50	50	50	50	50	К	
	Tx	тт		2,500	2.500	2,500	2,500	2.500	ĸ	
	Tr	T _a -T _x	2,500						m ²	
Total Radiator Area	Ar	Q / 2eB(Tr ⁴ -Ts ⁴)	1,240	1,181	24,519	12,374	17,068	11,819	kW/m ²	
Average Power Density Radiator Panel Length	φr	Q / A _r	3,544 15	3,544	3,544	3,544 50	3,544 55	3,544	_	
	Lr			12				40	m	
Radiator Panel Width	Wr	A _r / N _r / L _r	28	33	49	82	103	98	m	
Distance Along Axis From Front Profile of Fin's Inner Edge	X Yı		8	21	111	220	273	340	m	
	Y ₁ Y ₂	Y ₁ + w _r	10 38	5 38	5 54	25 107	25 128	25 123	m	
Profile of Fin's Outer Edge	12	r1 + wr	38	38	54	107	128	123	m	
Radiator Tubing										
Number of Radiator Tubes per Meter	Nt		125	100	70	50	45	45	m ⁻¹	
Radiator Tube Wall Thickness (CC)	h _{tw}		0.25	0.25	0.50	0.50	0.50	0.50	mm	
Corrosion Barrier Thickness (ZC)	h _{to}		0.25	0.25	0.50	0.50	0.50	0.50	mm	
Inside Radius of Radiator Tubes		(1/Nt)/2 - (htw+htc)	3.55	4.55	6.44	9.30	10.41	10.41	mm	
Tube Wall Stress	rt Īft	$(1/N_t)/2 - (n_{tw}+n_{to})$ P ₂ r _t / h _{tw}	0.7	4.55	0.6	9.30	10.41	10.41	mm MPa	
Cross-Sectional Area of Radiator Tubing		$N_t L_r \pi r_t^2$	0.7	0.9	1.53	0.9	0.84	0.61	m ²	
Volumetric Flow Rate (Gaseous Side)	A _t	$M_t L_r \pi r_t^-$ f_M / ρ_g	6.38	6.08	1.53	63.71	0.84	60.85	m ³ /s	
	f _{Vg}		6.38	6.08	82.3	93.8	87.87	60.85 99.3	m/s	
Coolant Velocity (Gaseous Side)	vg	f _{Vg} / A _t	00.0	11.9	02.3	93.0	104.5	99.0	nvs	
Cross-Sectional Area of Tube Wall	Atw	$\pi ((r_t+h_{tc}+h_{tw})^2-r_t^2)$	6.09	7.66	21.65	30.63	34.12	34.12	mm ²	
Volume of Tube Wall Material	Vtw	N _t L _r w _r A _{tw}	0.03	0.30	12.39	6.32	8.74	6.05	m ³	
Cross-Sectional Area of Tube Coating	Ato	$\frac{\pi}{\pi} ((r_t+h_{to})^2-r_t^2)$	4.59	5.84	8.22	11.81	13.21	13.21	mm ²	
Volume of Tube Coating Material		π ((rt+ntc) ⁻ -rt ⁻) Nt Lr wr Atc	0.24	0.23	4.70	2.44	3.38	2.34	m ³	And the second s
Radiator Mass per Fin	V _{to} Mr	ρ _{rw} V _{tw} +ρ _{rc} V _{tc}	2.26	2.19	4.70	30.26	41.93	2.34	tonnes	165 tonnes
Radiator Mass per Fin	IVIr	Prwvtw+Prcvtc	2.20	2.19	50.00	30.20	41.95	29.03	tonnes	

Firefly - Radiators

A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S
1 F	irefly Radiators																	
	escribes the radiator system.																	
	adiator Piping																	
92	Supply Pipe Length per Fin	Los	Lr +	15	180	168	105	106	197	m								
93	Supply Pipe Cross-Sectional Area	Aps	At	0.07	0.08	1.53	0.68	0.84	0.61	m²								
94	Supply Pipe Inside Major Radius	r _{os1}	(3A _{ps} /π) ^{1/2}	0.27	0.27	1.21	0.81	0.90	0.77	m	These deter	mine the minin	num cross-sec	tion of the s	structural me	mbers.		
95	Supply Pipe Inside Minor Radius	r _{os2}	r _{ps1} /3	0.09	0.09	0.40	0.27	0.30	0.26	m	With round p	pipes, the radia	ation loads bec	come unbea	rable. We ne	ed oval pip	bes.	
96	Supply Pipe Wall Thickness (ZiC)	hos		1.00	2.50	6.00	4.00	5.00	4.00	mm						L		
96 97	Supply Pipe Wall Stress	Ī∫ps	P ₂ r _{os1} / h _{os}	13.1	5.4	10.0	9.9	8.9	9.4	MPa		Nudear		~				
98	Supply Pipe Wall Volume per Fin	V _{ws}	L _{os} (π(r _{os1} +h _{os})(r _{os2} +h _{os}	0.02	0.52	5.13	1.42	2.01	2.54	m ³	Radiator	Reacto	ricipi				Fission	
99	Supply Pipe Mass per Fin	M _{ps}	V _{ws} p _w	0.11	3.40	33.64	9.33	13.17	16.64	tonnes	Kadualat		1044				-Reactor	
100			. wo pw								-	_						odistron
101	Volumetric Flow Rate (Liquid Side)	fv	f _M / ρ _c	0.08	0.08	1.65	0.83	1.15	0.79	m ³ /s							Mainf	odiation
102	Coolant Velocity (Liquid Side)	Vo		15	15	15	15	15	15	m/s	L	shield -					Shield	
103		-									1060	V.182		10	1	and the		
104	Return Pipe Length per Fin	Lpr	L _r + w _r +	43	213	217	187	178	138	m	. 500	C°						
105	Return Pipe Cross-Sectional Area	Apr	f _V / v _c	0.01	0.01	0.11	0.06	0.08	0.05	m ²	663 2.3	thode		NA				
106	Return Pipe Inside Radius	rpr	(A _{pr} /π) ^{1/2}	0.04	0.04	0.19	0.13	0.16	0.13	m	162	Con		K				1 1 4 10 "
107	Return Pipe Wall Thickness (ZiC)	hpr		0.25	0.50	1.00	0.75	0.75	0.75	mm	10 GN L 6 GN L~5° 16 N 27 GN E	. 1		5	LITT		La	thode "needle"
108	Return Pipe Wall Stress	Îfpr	P ₂ r _{pr} / h _{pr}	8.3	4.1	9.2	8.7	10.3	8.5	MPa) 5	Lestrical		01	A Mill			
109	Return Pipe Wall Volume per Fin	Vwr	$L_{pr} (\pi (r_{pr}+h_{pr})^2-A_{pr})$	0.00	0.03	0.26	0.12	0.13	0.08	m³	2765 1	on ductor .		A			-Fu	slop area
110	Return Pipe Mass per Fin	Mpr	V _{wr} ρ _w	0.02	0.18	1.67	0.77	0.86	0.56	tonnes				A	Y P	Y		
111	· · ·											١.		-		AV		
_	polant Mass										Q LV	1 Anode NThroat w potre rung Looling	- 10	Fri	-	MA	A	sion area node ring.
113	Cvcle Time in Radiator	t,	w _r / v _a	0.32	0.42	0.59	0.88	0.99	0.99	s	70-		1:01			N	-	+ ,
114	Total Volume of Radiator Tubing per Fin	V,	w _r A _t	2.05	2.56	74.61	56.04	87.18	60.37	m ³		-Longt LU	own			4	Ma	invato
115	Mass of Coolant in Radiator per Fin	Mor	$V_r \rho_q = f_M t_r$	0.04	0.05	1.53	1.15	1.79	1.24	tonnes	130	21100			-	X	1 +	hroato
116			er pg - wee		0.00							- condy			/	N	10	at a service of
117	Cycle Time in Supply Pipe	t _{ps}	L _{ps} / v _a	0.17	2.31	2.04	1.12	1.02	1.99	s	Noa	mobil					11	ind morge conve
118	Supply Pipe Volume per Fin	Vps	L _{ps} A _{ps}	1.11	14.05	257.65	71.33	89.69	120.80	m ³	1700	Coolmox					÷÷	ay rings 23
119	Mass of Coolant in Supply Pipes per Fin	M _{ops}	$V_{ps} \rho_g = f_M t_{ps}$	0.02	0.29	5.30	1.47	1.85	2.49	tonnes	•	- 0		1.		<u>×</u>	M	ag rings (46)
120	······		, ha h g , in tha															
121	Cycle Time in Return Pipe	t _{pr}	L _{pr} / v _o	2.84	14.19	14.44	12.50	11.90	9.23	s			Swamee-Ja	ain Friction	Factor Equ	ation		
122	Return Pipe Volume per Fin	Vpr	L _{pr} A _{pr}	0.24	1.13	23.81	10.40	13.65	7.34	m³				-			7 -2	
123	Mass of Coolant in Return Pipes per Fin	Mcpr	$V_{pr} \rho_c = f_M t_{pr}$	0.37	1.77	37.51	16.38	21.51	11.56	tonnes			f = 0	$25 \log_{10}$	(ε	$+\frac{5.74}{\text{Re}^{0.9}}$	1	
124													J = 0.	$_{20} 10g_{10}$	$\sqrt{3.7D}$	Re ^{0.9}	5/	
125	Total Cycle Time in Radiator System	t	t _r + t _{ps} + t _{pr}	3.33	16.92	17.08	14.50	13.91	12.21	s				L				
126	Coolant Mass per Fin	Mc	M _{cr} + M _{cps} + M _{cpr}	0.44	2.12	44.34	19.00	25.14	15.29	tonnes	106	tonnes	Haaland Fri	iction Facto	or Equation			
127													1		$\left(\varepsilon\right)$	$\left(\frac{D}{7}\right)^{1.11}$	6.9	
	adiator Pumps												$\frac{1}{\sqrt{f}} =$	$-1.8\log$	$5_{10} \left(\frac{-7}{2} \right)$	÷) ·	$+\frac{0.0}{\text{Re}}$	
129	Reynolds Number	Re	ρ _c v _c d _p / μ	883,343	862,201	3,928,335	2,790,691	3,277,588	2,727,438				\sqrt{J}		\ 3.	1/	ке	
130	Pipe Roughness	3		0.000015	0.000015	0.000015	0.000015	0.000015	0.000015	m			Haaland exp	licit solution	for Colebro	ok equation	1	
131	Darcy Friction Factor	f _D	1/(4(log((ɛ/7.4r)+(5.74/	0.01464	0.01471	0.01105	0.01174	0.01141	0.01179									
132	Pressure Drop (Head Loss)	hf	$f_D (L_{pr}/r_{pr}) (\rho_c v_c^2)$	5,249	27,030	4,536	5,873	4,623	4,457	kPa			Pressure Dr					
133	Pressure Drop (PSI)			761	3,920	658	852	671	646	psi			In order to ke					
134	Typical Pump Efficiency	η		60%	60%	60%	60%	60%	60%				pumping pres	ssure requir	ed (pressure	drop) mus	t not be too	high.
135	Pump Power	Ph	f _v h _f / η	729	3,578	12,463	8,144	8,844	5,904	kW				L	72		т	-1/2
136	Pump Power (HP)			544	2,669	9,297	6,075	6,597	4,404	hp			$h_f = f$	$D \cdot \frac{L}{=} \cdot \frac{1}{2}$	$\frac{V^2}{2g}$	$\Delta n =$	$f_D \cdot \frac{L}{D}$.	$\rho v \sim$
137	Pump Mass per Fin	Mu	Ph / 500	1.09	5.34	18.59	12.15	13.19	8.81	tonnes	59	tonnes		D	2g	-p = .	$^{\prime D} D$	2
138	1												1		1			

FIREFLY THERMAL CONTROL

- A liquid metal evaporates in the hollow structure capturing heat in its phase change
- The gas moves to the radiators, where it cools and condenses, expelling the heat. The liquid metal is pumped back to the main structure where the cycle begins again

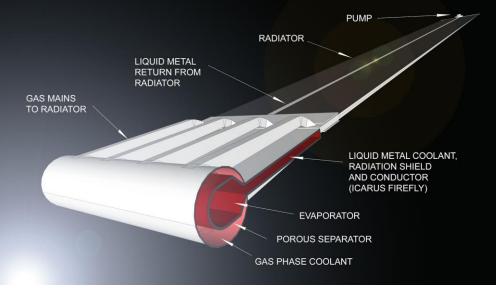
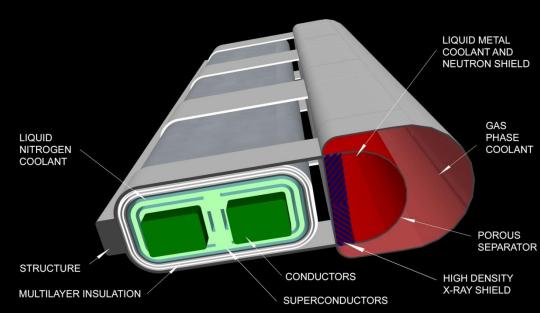



Image: M Lamontagne

FIREFLY THERMAL CONTROL

- A superconducting magnetic coil and its shielding:
- The liquid metal coolant absorbs neutrons, the high density metal absorbs x-rays, heating up
- The coolant evaporates, the gas carries away heat
- The multilayer insulation protects the superconductors from the thermal radiation from the hot shield
- Liquid nitrogen coolant removes any leftover heat to be radiated away at low temperature radiators
 In the image the fusion reaction is to the right

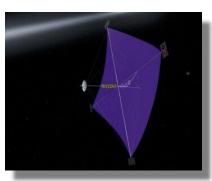
Image: M Lamontagne

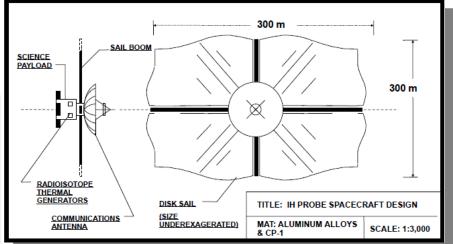
Updated Firefly

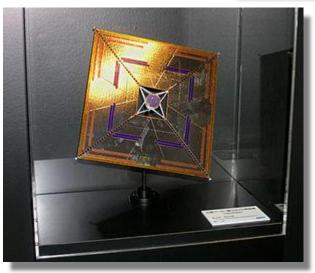
Freeland II, R.M. & Lamontagne M, "Firefly Icarus: An Unmanned Interstellar Probe using Z-Pinch Fusion Propulsion", JBIS, 68, pp.68-80, 2015.

Other fusion options

• NIF, HIPER

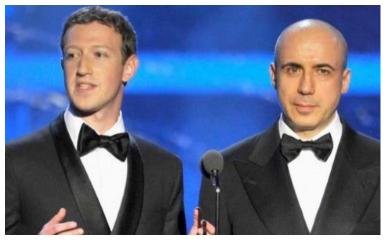

- MCF
- FRC
- MTF
- Various...and tipping point private investment?


MCF - ITER in build



Other Near future - Solar Sails?

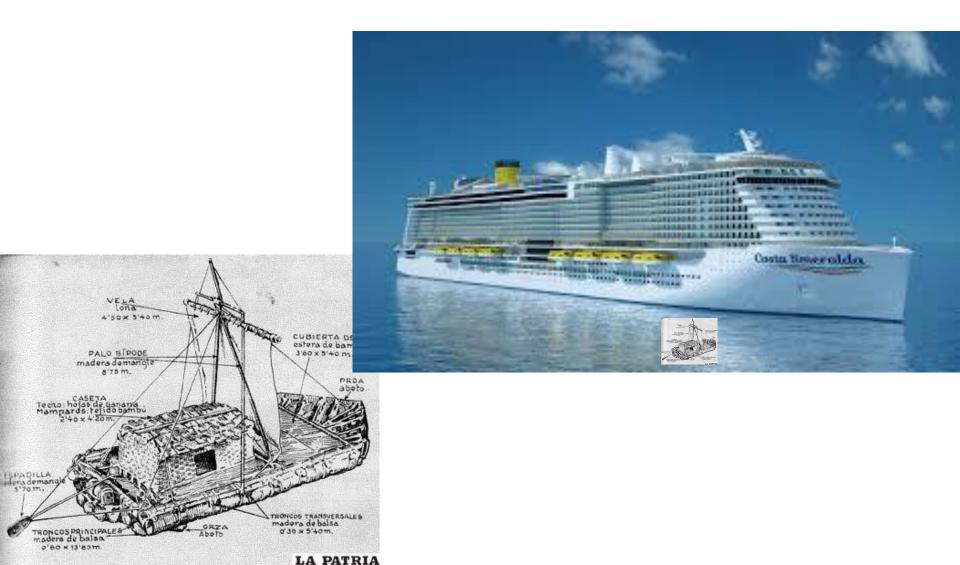
Uses solar pressure to push ultrathin thin sail to high speeds.


- IKAROS: Interplanetary Kite-craft
 Accelerated by Radiation Of the Sun
- Launched May 2010
- 315 kg
- Square sail, 20 m diagonal
- 75 micro-m sheet of polymide
- Spun at 20-25 rev/min to unfurl
- Propelled onto Venus.
- The first Solar Sail in history

JAXXA

BREAKTHROUGH Starshot

12 April, 2016 One World Observatory New York, NY USA, Earth



So this may take a little while:

A few hundred years...?

Special thanks to:

•Baxter, S., 'Project Icarus: Exploring Alpha Centauri: Trajectories and Strategies for sub probe deployment', JBIS

•Benford J., 'Sailships Vs Fusion Rockets: The Contrarian View' JBIS, 70, pp.175-183, 2017.

•A Bond & A Martin, Project Daedalus – The Final Report on the BIS Starship Study, JBIS Supplement, 1978. (Also available in compendium book form direct from BIS.)

•Crawford, I.A., "The Astronomical, Astrobiological and Planetary Science Case for Interstellar Spaceflight", JBIS, 62, 11/12, pp.415-421, Nov./Dec. 2009.

•Crawford, I.A., "A Comment on 'The Far Future of Exoplanet Direct Characterization – The Case for Interstellar Space Probes'", Astrobiology, 10, pp.853-856, 2010.

•Crawford, I.A., "Project Icarus: Astronomical Considerations Relating to the Choice of Target Star", JBIS, 63, no.11/12, pp.419-425, Nov./Dec. 2010.

•Crawford, I.A., "Project Icarus: A Review of Local Interstellar Medium Properties of Relevance for Space Missions to the Nearest Stars", Acta Astronautica, 68, 7/8, pp.691-699, April/May 2011.

•Crawford, I., 'Project Icarus: Preliminary thoughts on the Selection of Probes and Instruments for an Icarus-Style Interstellar Mission', JBIS,

•Freeland II, R.M. & Lamontagne M, "Firefly Icarus: An Unmanned Interstellar Probe using Z-Pinch Fusion Propulsion", JBIS, 68, pp.68-80, 2015.

•R.M. Freeland, "Project Icarus: Fission-Fusion Hybrid Fuel for Interstellar Propulsion", JBIS, 66, pp.290-296, 2013.

R.M. Freeland, "Firefly Icarus: An Unmanned Interstellar Probe Using Z-Pinch Fusion Propulsion", JBIS, 68, pp.68-80, 2015.

•J.R. French, "Project Icarus: A Review of the Daedalus Main Propulsion System", JBIS, 66, pp.248-251, 2013

•K F Long, R K Obousy, A C Tziolas, A Mann, R Osborne, A Presby and M Fogg, Project Icarus: Son of Daedalus – Flying Closer to Another Star", JBIS, 62, pp.403-416, 2010.

•Long, K F, 'Project Icarus: Development of Fusion Based Space Propulsion for Interstellar Missions', JBIS, 69, pp.2016

•Long K F, 'Project Icarus: The Motivation behind Fusion Propulsion, JBIS,

•K.F.Long, R.Obousy, A.Tziolas, P Galea, R Swinney, Project Icarus: The Origins and Aims Of The Theoretical Starship Design Study', JBIS

•Milne, P., Lamontagne M., Freeland II, R.M., 'Project Icarus: Communications Data Link Designs Between Icarus and Earth and Between Icarus Spacecraft' JBIS. 68. No 8, 2016

S.K. Reddy. "Study of Daedalus Interstellar Spacecraft

S.K. Reddy, "Study of Daedalus Interstellar Spacecraft Reaction Chamber and Thrust Structure", JBIS, 68, pp.33-43, 2015.

•Smith R, Sheikh and Swinney, R.W., 'Navigation to the Alpha Centauri System', JBIS, 69, No 11, pp.379-389, 2016

•Smith R. and Swinney R.W., 'Granularity and Ambiguity in Navigating the Void' JBIS, 69, No 11, pp.390-401, 2016.

•M. Stanic, "Project Icarus: Nuclear Fusion Propulsion Concept Comparison", JBIS, 65, pp.232-243, 2012.