Scientia ad sidera - Knowledge to the stars

World Ships – Feasibility and Rationale

Andreas M. Hein Cameron Smith Frédéric Marin Kai Staats

ESA Advanced Concepts Team Interstellar Workshop 20th June 2019

Initiative for Interstellar Studies

Credit: Adrian Mann

Credit: Maciej Rebisz

Time-mass problem

Time-mass map: Crewed interstellar travel concepts can be located in this map:

NITIATIVE

TUD

ELLAR

Generation ships

Sleeper ships

Embryo / Emulation ships

(Hein & Baxter, 2019) (Crowl et al., 2012)

À

NITIATIVE

STUDIE

World ships

World ship characteristics

World ship characteristics (Martin, 1984; Bond & Martin, 1984; Hein et al., 2012):

- Self-sufficiency: thousands of years
- Population size: > 100,000
- Cruise velocity: < 1%c

41TIATI

TUD

Credit: Adrian Mann

Cruise [%c]	velocity	< 1000	Population size < 100,000	> 100,000
> 10		Sprinter	Colony ship	-
< 10		Slow boat	Colony ship	World ship
< 1		-	Colony ship	World ship
			(Hoip at al. 2010)	Acto Euturo popor

(Hein et al., 2019) – Acta Futura paper

Existing world ship designs from the literature:

Design	Popula-		Dry mass	Propellant	Cruise
	tion size		[tons]	mass	velocity
				[tons]	[%c]
Enzman world ship [17]	20,000	-	300,000	$3 \cdot 10^{6}$	0.9
	200,000				
Torus world ship [32]	100,000		10^{7}	$5 \cdot 10^{7}$	1
Dry world ship - Mark 2A [12]	250,000		$2.0 \cdot 10^{11}$	$8.2 \cdot 10^{11}$	0.5
Dry world ship - Mark 2B [12]	250,000		$5.7 \cdot 10^{11}$	$2.3\cdot10^{12}$	0.5
Wet world ship [12]	250,000		$2.2\cdot10^{12}$	$9.0\cdot10^{12}$	0.5

(Hein et al., 2019) - Acta Futura paper

[12] (Bond & Martin, 1984)[17] (Crowl et al., 2012)[32] (Hein et al., 2012)

NITIATIVE

TUD

Existing world ship designs from the literature:

Design	Popula-	Dry mass	Propellant	Cruise
	tion size	[tons]	mass [tons]	velocity [%c]
Enzman world ship [17]	20,000 -	300,000	$3 \cdot 10^{6}$	0.9
	200,000			
Torus world ship [32]	100,000	10^{7}	$5 \cdot 10^{7}$	1
Dry world ship - Mark 2A [12]	250,000	$2.0\cdot10^{11}$	$8.2\cdot10^{11}$	0.5
Dry world ship - Mark 2B [12]	250,000	$5.7\cdot10^{11}$	$2.3\cdot10^{12}$	0.5
Wet world ship [12]	250,000	$2.2\cdot10^{12}$	$9.0\cdot10^{12}$	0.5

Credit: Syd Mead

NITIATA

Existing world ship designs from the literature:

Design	Popula-		Dry mass	Propellant	Cruise
	tion size		[tons]	mass	velocity
				[tons]	[%c]
Enzman world ship [17]	20,000	-	300,000	$3 \cdot 10^{6}$	0.9
	200,000				
Torus world ship [32]	100,000		10^{7}	$5 \cdot 10^7$	1
Dry world ship - Mark 2A [12]	250,000		$2.0 \cdot 10^{11}$	$8.2 \cdot 10^{11}$	0.5
Dry world ship - Mark 2B [12]	250,000		$5.7 \cdot 10^{11}$	$2.3\cdot10^{12}$	0.5
Wet world ship [12]	250,000		$2.2\cdot10^{12}$	$9.0\cdot10^{12}$	0.5

(Hein et al., 2012)

NITIATIVE

STUD

Ъ

Existing world ship designs from the literature:

Design	Popula-		Dry mass	Propellant	Cruise	
	tion size		[tons]	mass	velocity	
				[tons]	[%c]	
Enzman world ship [17]	20,000	-	300,000	$3\cdot 10^6$	0.9	_
	200,000					
Torus world ship [32]	100,000		10^{7}	$5\cdot 10^7$	1	
Dry world ship - Mark 2A [12]	250,000		$2.0 \cdot 10^{11}$	$8.2 \cdot 10^{11}$	0.5	
Dry world ship - Mark 2B [12]	250,000		$5.7 \cdot 10^{11}$	$2.3\cdot10^{12}$	0.5	
Wet world ship [12]	250,000		$2.2\cdot 10^{12}$	$9.0\cdot10^{12}$	0.5	

Credit: Adrian Mann

NITIATIVE

STUDI

ELLAR

World ships and population size

Replacing spacecraft mass by population size:

(Hein et al., 2019) – Acta Futura paper

Genetics – population size

5					
	Model	Model type	Spacefaring	D1	Current regard
			simulations?		
	ETHNOPOP	Demographic	Few	<300	likely low
	SMITH	Statistical	Several	>7,500, ideally	lower & middle figures
				larger (14,000 -	reasonable, higher fig-
				44,000)	ures too high
	GARDNER-	Statistical	Several	>2,000	possibly reasonable
	O'KEARNY	Agent-Based			
	HERITAGE	Monte Carlo	Many, ongoing	>5,000	possibly reasonable
	(paper 1)	Agent-Based			
	HERITAGE	Monte Carlo	Many, ongoing	mathematical min-	possibly reasonable
	(paper 2)	Agent-Based		imum 98, ideally	
				larger	
	HERITAGE	Monte Carlo	Many, ongoing	circa 500	possibly reasonable
	(paper 3)	Agent-Based			
	HERITAGE	Monte Carlo	Yes, ongoing	Some multiples of	biologically and cultur-
	+ SMITH	Agent-Based		500 – 1,000 person	ally realistic and rea-
		+ Anthropo-		village modules	sonable
		logical			
	SIMOC	Monte Carlo	Many (parallel	Unknown	Unknown
		Agent-Based	computing)		
				(Hein et al., 201	9) – Acta Futura paper

Population sizes on the order of 1000 – 10,000 needed

NITIATIVE

Which world ship designs are feasible?

Suitable **population size estimates** and feasibility of world ship concepts:

(Hein et al., 2019) – Acta Futura paper

NITIATIVE

STUDIES

ELLA

World ships will comprise billions of components (hardware, software, biological...) → **Reliability**

NITIATL

3712	
Cr	redit: Maciej Rebisz

Reliability	Replacement [1/s]	rate
99.99%	3	
85%	0.05	

(Hein et al., 2012)

Very sophisticated, Al-driven maintenance system needed!

Credit: Adrian Mann

Economics

Estimates when Earth economy could sustain a world ship:

Reference	Year of breakeven
Martin (1984) [46]	2500-3000
Hein (2011) [29]	2300-3000

(Hein et al., 2019) – Acta Futura paper

Estimates based on GDP extrapolations

Credit: Samsung

Pure economic feasibility in hundreds of years – Does not tell if we want to invest

[29] (Hein, 2011)

[46] (Martin, 1984)

What about alternatives?

World ships: one of many concepts

NITIATIVE

STUDIE

ELLA

Overview of results

Results for some of the feasibility criteria:

Feasibility	Criteria	Preconditions
category		
Biological	Genetics	Population size from 10^3 - 10^4
Cultural	Knowledge transmission	Unknown
Social	Societal structure	Modular habitat (10^3 per section)
Technical	Technological performance	Velocities higher than $> 1\%c$ required
	Technological maturity	Solar system precursors required
	Technological reliability	Order of 1-0.01 parts replaced per second, AI-based maintenance system
Economic	Scope of economic activi-	Solar System-wide economy
	ties	
	Wealth	GNP breakeven in year 2300-3000
Alternatives	Emergence of other modes of crewed interstellar travel	Likely to exist in year 2300 and beyond

(Hein et al., 2019) – Acta Futura paper

Several key issues recently addressed; several open issues

Initiative for Interstellar Studies

NITIATIVE

Conclusions

Conclusions:

- World ships remain an interesting concept to study
- How to sustain human life in space over extended time frames
- Key feasibility issues:
 - Maintenance
 - Obsolescence due to other transportaiton modes → world ships as mobile solar system habitats?

Future work:

Cultural and social aspects → shed light on resource-constrained societies in general

References

Crowl, A., Hunt, J., & Hein, A. M. (2012). Embryo Space Colonisation to Overcome the Interstellar Time Distance Bottleneck. Journal of the British Interplanetary Society, 65, 283-285.

- A. Crowl, K. F. Long, and R. Obousy (2012). The Enzmann Starship: History & Engineering Appraisal. Journal of the British Interplanetary Society, 65(6):185.
- A.M. Hein. Technology, Society and Politics in the Next 100-300 (2011). Years Implications for Interstellar Flight. In 100 Year Starship Study Public Symposium, Orlando, USA.
- A Bond and AR Martin. World Ships-An Assessment of the Engineering Feasibility (1984). Journal of the British Interplanetary Society, 37:254.
- Hein, A. M., Pak, M., Pütz, D., Bühler, C., & Reiss, P. (2012). World ships—architectures & feasibility revisited. Journal of the British Interplanetary Society, 65(4), 119.
- Martin, A. R.. World Ships-Concept, Cause, Cost, Construction and Colonisation (1984). Journal of the British Interplanetary Society, 37:243.
- Bond, A. and Martin, A. R. (1984). World Ships-An Assessment of the Engineering Feasibility. Journal of the British Interplanetary Society, 37:254.
- Hein, A. M., & Baxter, S. (2019). Artificial Intelligence for Interstellar Travel. Journal of the British Interplanetary Society, 72 :125–143
- A.M. Hein, C. Smith, F. Marin, K. Staats (2019). World ships: Feasibility and Rationale. Submitted to Acta Futura.

Introduction

Andreas Hein, PhD

- Systems engineering researcher
- Aerospace engineer

Currently:

NITIAT

- Assistant professor in systems engineering at CentraleSupélec, Universi Paris-Saclay
- Executive Director Initiative for Interstellar Studies (i4is)

Previously: Dr.-Ing. Technical University of Munich, visiting researcher MIT, Diploma Technical University of Munich; Stanford Ignite Program fellowship, ISAE

Professional experience: ESA-ESTEC Architecture & Strategy Office, Paris-Saclay Efficacité Énergétique (PS2E), Knowledge Inside systems engineering consultant

Publications: 60 papers in peer-reviewed journals and conference proceedings

Awards (selection): Exemplary PhD Thesis Award, Systems Engineering Honor Society, Willy Messerschmitt Award (Faculty of Mechanical Engineering, TUM)

Initiative for Interstellar Studies (i4is)

UK **not-for-profit company** founded in 2014 *Objectives:* Conduct R&D, education, and public outreach on interstellar travel

Achievements

STUDIES

Project Lyra: mission to interstellar asteroid / comet (2017/2018)

Project Dragonfly: International interstellar laser sail mission design competition (2015)

Andromeda Probe: Concept study for Breakthrough Starshot (2016)

Collaboration with ISU: 2-week interstellar & ChipSat module, student projects (since 2015)

Some recent press coverage:

MIT Technology Review

Business Impact

 $\mathbf{\lambda}$

NITIATI

Femto-Spacecraft Could Travel to Alpha Centauri

Earth's nearest exoplanet twin orbits a star about four light years from here. Now scientists say it's possible to visit this system in our lifetimes by propelling a tiny spacecraft on the tip of a laser beam.

by Emerging Technology from the arXiv August 31, 2017

important candidate in the search for extraterrestrial life.

Last year, a small team of astronomers announced the discovery of an Earth-like planet orbiting the red dwarf star Proxima Centauri, one of our nearest neighbors in the Alpha Centauri system. This esoplanet, called Proxima Centauri b, sits in the habitable zone around its host. Any water there should exist in liquid form, making this planet an

Consequently, Proxima Centauri b has generated intense interest. It is about 40 trillion klometers from Earth, a distance light travels in just over four years. A spacecraft traveling at about a tenth of light speed could make the trip in about 60 years.

And that raises an interesting question. Is it possible to build a spacecraft that we could send to Proxima Centauri within the lifetimes of people living today?

29 Nov 2017 | 16:00 GMT

How We Could Explore That Interstellar Asteroid

Sending a spacecraft to 'Oumuamua would be a challenge, but we might be able to do it if we move fast

By Evan Ackerman

Illustration: M. Kommesser/European Southern Observatory

SCIENTIFIC AMERICAN

SpaceX's Planned Giant Rocket Could Chase Down Interstellar Asteroid

A new study charts potential courses for missions to 'Oumuamua, an oddly-shaped space rock from another star

By Mike Wall, SPACE.com on November 29, 2017

