

Evolvement of Augmented Reality System for AIT/AIV and Operations Four Use Cases

<u>Kaj Helin</u>, Jaakko Karjalainen Human factors, Virtual and Augmented reality VTT Technical Research Centre of Finland Ltd

http://www.youtube.com/user/VirtualAndAugmented/videos

AR/VR for European Space Programme @ESTEC 2.12.2019

Space related VR/MR/AR research ~15 years

21 – Augmented reality

based S and ground

applications (ESA-AROGAN)

2005 - Multimodal astronaut virtual reality training prototype (View-of-thefuture)

2009 - Satellite assembly design in VE (ManuVAR)

2013 - Multimod

presence system

AR-

th Mars

09/12/2019 VTT - beyond the obvious

2016 - Augmented Reality for AIT, AIV and Orbit Operations (ESA-EdcAR)

2017 – AR supported installation of the opporary Stowage Rack in . ISS (WEKIT) 2018 – AR based Rover Maintenance in Mars Terrain Demonstrator (WEKIT)

2019 – ISS procedure view to Hololens (ESA-MobiPV4Hololens)

Timeline for development

ESA-EdcAR

Augmented Reality for AIT, AIV and Orbit Operations

- Observations
- Expert evaluation Number of the subjects: 14

https://youtu.be/djUdsQ5pY0s

https://www.vttresearch.com/media/news/augmented-reality-increases-maintenance-reliability-at-a-space-station

Note, Hololens video captures resolution is less than in real device

Results and updates based on use case

Results from use case

- System was working properly for the first Hololens application
- No issue with voice commands
- Sensor visualization was nice feature
- Symbols and safety symbols (ISO 7010:2012) are working nicely
 - ODF-symbols and layout should be supported in the future

Updates for next use case

- Full support for ARLEM (Draft Standard for an Augmented Reality Learning Experience Mode)
- The first draft for guidance to annotation
- Support for video and image in 3D space
- Automatic initialization from image marker

WEKIT TSR installation to Space Station

Evaluation methods:

- System Usability Scale (SUS)
- Observations
- Expert evaluation

- ...

Number of the subjects: 39

https://youtu.be/fNEqOBMKhGg

Results and updates based on use case

Results from use case

- The 3D space UI and annotations were working properly without any delay and the image quality was good
- The main downside of the system is the narrow field of view, the user has to looking for information
- SUS score average: 68
 - According to validation studies, the acceptable SUS score is about 70 (Bangor et al., 2009; Brooke, 2013).

Updates for next use case

- The updated guidance to annotation
- Large area support
- No initialization needed
 - Calibration per Hololens per space
- Updated UI
- Updated sensor visualization
- Handling in the error situation

WEKIT Moon/Mars rover maintenance support with AR

Evaluation methods:

- System Usability Scale (SUS)
- Observations
- Expert evaluation

- ...

Number of the subjects: 199

https://youtu.be/JRMLs9SYg6k

Results and updates based on use case

Results from use case

- System was working properly as prototype for large amount of subjects
- Updated UI and guidance makes task executing more effective
- Hololens limitation was still issue
- SUS score average: 69
 - According to validation studies, the acceptable SUS score is about 70

Conclusion from use cases

- The 'one-size-fits-all' 3D UI does not work
- User has three options to interact with UI: (1) gestures, (2) voice commands and (3) clicker.
- Same analogy work with UI layout. User could choose: (1) list type or (2) card type

=> System was mature enough for ODF supported system (symbols and procedures)

ESA-MobiPV4Hololens

https://youtu.be/c-DVoLT4n9c

Results from MobiPV4Hololens

User test with 5 users

Main benefits

- Supports two hands-busy procedures
- Able to see introduction in next to the working area
- Images next to working area helps
- Text-to-speech supports procedure execution

Issues

- Usability/Comfort issues with Hololens
- Narrow FoV cuts some images
- Sometimes hard to read text

Demos in ISS ODF control board ~15 users

Main overall feedback

- It is working with standard mobiPV
- Voice commands are working
- Supporting system, not main app
- Hard to remember voice commands
- Narrow FoV and usability issues

Conclusion and next steps

- As the AR-system has been already partially implemented to the space system and its usability has reached a reasonable level
- It can be suggested that the AR-system is potentially a useful tool for supporting and facilitating AIT/AIV and operations, even though the tool is still in prototyping phase
 - => AR features will be implemented for AIT/AIV and operations in September started contract¹
- Also new devices e.g. Hololens 2 should solve most of the current usability issues
- AR features should be defined into update ODF e.g. for the future Gateway station

Kaj Helin

Principal Scientist, Certified Project Manager IPMA Human factors, Virtual and Augmented reality VTT Technical Research Centre of Finland Ltd Kaj.helin@vtt.fi