

Kelvins Satellite Pose Estimation Challenge

ESA Advanced Concepts Team

Mate Kisantal, Dario Izzo, Marcus Märtens

▬◨▶▬ੋ ◾ ◼ ◾ ■ = = ■ ▮ ■ ■ ■ ■ ■ ■ ₩ ■

Spacecraft Pose Estimation

- Predicting relative position + orientation from images
- Rendezvous with uncooperative spacecraft
- Enabling:
 - debris removal
 - on-orbit servicing

(ESA - David Ducros)

(Netflix)

Kelvins Satellite Pose Estimation Challenge

- Releasing SPEED dataset
- Common benchmark
- Raising awareness in CV/ML community
- Pushing state-of-the-art
- 1st February 1st July, 2019

Kelvins - ESA's Advanced Concepts Competition Website

Reach the absolute zero error.

· = ■ ► = = + ■ = = = = ■ ■ = = = = ■ ■ ■ ■ = = = ₩

SPEED Dataset - in a nutshell

- Satellite PosE Estimation Dataset, created by SLAB
- 15000 synthetic images
- 300 real images
- Ground truth pose labels
- 300 real images

__ 88 ⊾ 88 ━ + 88 ━ ≝ __ 88 88 **__** 88 **⊾** 88 88 **__** 88 88 1*1

Dataset Properties - position distributions

Dataset Properties - orientation distributions

Competition design - Metric

• Position and orientation error

$$e_{r} = \frac{\left| \boldsymbol{r}_{gt} - \boldsymbol{r}_{est} \right|_{2}}{\left| \boldsymbol{r}_{gt} \right|_{2}} \qquad e_{q} = 2 \cdot \arccos\left(\left| \left\langle \boldsymbol{q}_{est}, \boldsymbol{q}_{gt} \right\rangle \right| \right)$$

AT

• Pose error and average pose error

$$e_{pose} = e_q + e_r$$
 $E = \frac{1}{N} \sum_{i=1}^{N} e_{pose}^{(i)}$

1

- Calculated on synthetic and real test sets separately
- Sensitivity: 10 cm ~ 0.7094 degrees
- Also considered: average distance error, reprojection error

Competition Results

Participants

esa

- 48 teams participated in total
- 20 submitted a post competition questionnaire

Have you/your team been involved in pose estimation related research before the competition?

20 responses

Have you/your team been involved with space related research before the competition?

20 responses

Yes

No

Final results

The set = + 11 = ⋮ = 11 11 = = ≤ # → 01 11 = 12 # 11 ...

Team	E_{syn}	E_{real}	$\mu(e_q) \pm \sigma(e_q) \ [\circ]$	$\mu(e_r') \pm \sigma(e_r')$ [m]	PnP
1. UniAdelaide	0.0094	0.3752	$0.41^\circ\pm1.50^\circ$	0.032 ± 0.095	Yes
2. EPFL_cvlab	0.0215	0.1139	$0.91^{\circ} \pm 1.29^{\circ}$	$0.073~\pm~0.587$	Yes
3. pedro_fairspace	0.0571	0.15548	$2.49^{\circ} \pm 3.02^{\circ}$	0.145 ± 0.239	No
SPN [24]	-	-	8.43°	0.783	No

The set of th

Accuracy - Example 1

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Where is Waldo Tango?

Accuracy - Example 2

Analysis

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ₩ ₩ ₩

Which samples are difficult?

- 'Super Pose Estimator' best prediction for each sample
- Performance ~ difficulty
- Ranking test samples

_ II ⊾ :: ■ + II ■ ½ _ II II _ _ Z := 18 ... Ø II _ Z := 18 ...

Influence of the background

= II 🛌 :: 🖛 🕂 II 💻 🚝 = II II = = = # 🛶 🚳 II = :: II 💥 🙌

Distance dependence

= II 🛌 ## II = 🚝 = II II = = ## 🛶 🙆 II = ## ## II 💥 🙌

Keypoint matching vs. Direct pose estimation

- Keypoint matching: benefits from geometrical optimization, but requires 3D model
- Direct estimation: can be trained on the dataset

Separate vs combined localization

- Separating position estimation from orientation estimation
- Most cases using bounding box detection or segmentation
- Requires additional annotation
- Allows zooming in on the relevant parts

Thank you for your attention!

• Upcoming publication:

SATELLITE POSE ESTIMATION CHALLENGE: DATASET, COMPETITION DESIGN AND RESULTS

A PREPRINT

Mate Kisantal

Advanced Concepts Team European Space Agency Noordwijk, The Netherlands mate.kisantal@esa.int

Dario Izzo

Advanced Concepts Team European Space Agency Noordwijk, The Netherlands dario.izzo@esa.int Sumant Sharma Department of Aeronautics & Astronautics Stanford University Stanford, California, USA sharmas@stanford.edu

Marcus Märtens Advanced Concepts Team European Space Agency Noordwijk, The Netherlands marcus.maertens@esa.int

September 10, 2019

Tae Ha Park Department of Aeronautics & Astronautics Stanford University Stanford, California, USA tpark94@stanford.edu

Simone D'Amico Department of Aeronautics & Astronautics Stanford University Stanford, California, USA damicos@stanford.edu

__ II ▶_ II ━ ++ II ━ _ II II ႍ _ II ■ ... IV