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• Established 1 July 2018.

• Annual budget: $9.8 Million (tiny!)

• Roles:

• Providing national policy and strategic 
advice on the civil space sector.

• Coordinating Australia's domestic civil
space sector activities.

• Supporting the growth of Australia's 
space industry and the use of space 
across the broader economy.

• Leading international civil space 
engagement.

• Administering space activities 
legislation and delivering on our 
international obligations.

• Inspiring the Australian community and 
the next generation of space 
entrepreneurs.
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On to pose estimation…



Kelvins Pose Estimation Challenge

• Given an image of a satellite, 
estimate its 6DoF pose (position, 
orientation) w.r.t. to the observing 
camera.

• Available data:
• Training images of satellite with 

ground truth pose.

• Challenges:
• Varying lighting, scale, background.

• Assumptions:
• It’s always the same satellite…

by Tat-Jun Chin, University of Adelaide 11



More general pose estimation

• Usually needs to work on an 
object class (e.g., faces, cars).

• Significant variations in the 
instances of the object class.

• Significant variations in object 
and environmental conditions.

Yan Li, Leon Gu, Takeo Kanade. A Robust Shape Model for Multi-view Car Alignment. CVPR 2009.
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Abstract

Weproposean approach to estimate the6DOF poseof a

satellite, relative to a canonical pose, from a single image.

Such a problem is crucial in many space proximity opera-

tions, such asdocking, debris removal, and inter-spacecraft

communications. Our approach combines machine learn-

ing and geometric optimisation, by predicting the coordi-

nates of a set of landmarks in the input image, associat-

ing the landmarks to their corresponding 3D points on an

a priori reconstructed 3D model, then solving for the ob-

ject pose using non-linear optimisation. Our approach is

not only novel for this specific pose estimation task, which

helps to further open up a relatively new domain for ma-

chine learning and computer vision, but it also demon-

strates superior accuracy and won the first place in the re-

cent Kelvins Pose Estimation Challenge organised by the

European Space Agency (ESA).

1. Introduction

Estimating the 6DOF pose of space-borne objects (e.g.,

satellites, spacecraft, orbital debris) is a crucial step in

many space operations such as docking, non-cooperative

proximity tasks (e.g., debris removal), and inter-spacecraft

communications (e.g., establishing quantum links). Exist-

ing solutions are mainly based on active sensor-based sys-

tems, e.g., the TriDAR system which uses LiDAR [12, 28].

Recently, monocular pose estimation techniques for space

applications are drawing significant attention due to their

lower power consumption and relatively simple require-

ments [11, 31, 30, 9].

Due to the importance of the problem, the Advanced

Concepts Team (ACT) at ESA recently held a bench-

mark competition called Kelvins Pose Estimation Chal-

lenge (KPEC) [3]; given images that depict a known satel-

lite under different unknown poses (see Figure 1), estimate

the pose of the satellite in each image. To develop their al-

Figure 1: Sample images of the Tango satellite from

SPEED [30]. Note the significant variations in object size,

object orientation, background and lighting condition.

gorithms, the challenge participants are given aset of train-

ing images containing the target satellite with ground truth

poses; Section 1.1 provides more details of the dataset.

The scenario considered in KPEC is a special case of

monocular vision-based object pose estimation [14, 34].

This is because the target object (the “Tango” satellite)

is known beforehand, and there is no need to generalize

the pose estimator to unseen-before instances of the object

class (e.g., other satellites). However, the background en-

vironment can still vary, as exemplified in Figure 1. Con-

trast the KPEC scenario to the generic pose estimation set-

ting [14, 34], where the provenance of the target object

is unknown a priori and generalising to unseen-before in-

stances is necessary (e.g., a car pose estimator must work

on all kinds of cars).
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SIFT, SURF, etc.
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Keypoint matching and detection
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Structure-from-motion

• Given observations of a set of 3D points in a number of images, 
estimate the coordinates of the 3D points and relative poses of the 
cameras (that captured the images).

by Tat-Jun Chin, University of Adelaide 15

Source: [openmvg.readthedocs.org/en/latest/_images/structureFromMotion.png]

http://openmvg.readthedocs.org/en/latest/_images/structureFromMotion.png
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...

SIFT, SURF, etc.

Figure 2: Overall pipeline of our satellite pose estimator.

Under the KPEC setting, we developed a monocular

pose estimation technique for space-borne objects such as

satellites. Inspired by works that combine the strength of

deep neural networks and geometric optimisation [26, 25,

35], our approach contains three main components:

1. using the training images, reconstruct a 3D model of

the satellite by multi-view triangulation;

2. train a deep network to predict the position of pre-

defined landmark points in the input image;

3. solve for the pose of the object in the image using the

2D-3D correspondences of the predicted landmarks

via robust geometric optimisation.

A high level pipeline of our framework is illustrated in Fig-

ure 2. Our code can be accessed in [4].

As suggested above, our method fully takes advantages

of all available data and assumptions of the problem. This

plays a significant role in producing highly-accurate 6DOF

pose estimation for the KPEC. Specifically, our method

commits an average cross validation (CV) error of 0.7277

degrees for orientation and 0.0359 metres for translation

on the KPEC training set. We achieved an overall score

of 0.0094 on the test set which ranked us the first place in

KPEC. The rest of the paper first reivews related worksand

then describes our method and results in detail.

1.1. Dataset

The KPEC was designed around the Spacecraft PosE

Estimation Dataset (SPEED) [30], which consists of high-

fidelity grayscale images of the Tango satellite; see Fig-

ure 1. There are 12,000 training images with ground

truth 6DOF poses (position and orientation) and 2,998 test-

ing images without ground truth. Each image is of size

1920⇥1200 pixels. Half of the available images have no

background (i.e., the background is the space void) while

the other half contain the Earth as the background. Mirror-

ing the setting during proximity operations, the size, orien-

tation and lighting condition of the satellite in the images

vary significantly, e.g., the number of object pixels vary be-

tween 1k and 500k; see Figure 3 for an example. For more

details of the dataset, see [30].

2. Related works

Monocular vision-based pose estimation has a large

body of literature. We review the major classes of previ-

ous work, before surveying the specific case of spacecraft

pose estimation.

2.1. Monocular pose estimation

Keypoint methods Traditional pose estimation tech-

niques usually use hand-crafted keypoint detectors and de-

scriptors, e.g., SIFT [21, 20], SURF [6], MSER [22] and

BRIEF [8]. The key step is to produce a set of 2D-2D or

2D-3D keypoint correspondences, then estimate the pose

using non-linear optimisation from the correspondence set.

The keypoints are detected automatically and described us-

ing heuristic measures of geometric and photometric in-

variance. However, while the keypoint methods are robust

to a certain extent, they typically fail where there is large

variations in pose and lighting conditions. Nonetheless,

the earlier research has given birth to effective and well-

Figure 3: Large variation in object size in the images.

Target satellite
(about 30x30 pixels)
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Baseline 1: Geometric technique

Pros

• Gives very accurate pose 
estimates when it works – when 
sufficient good keypoint
matches can be established.

Cons

• Fails catastrophically on images 
that don’t work – target too 
small, background too cluttered.
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Abstract

Wepropose an approach to estimate the6DOF poseof a

satellite, relative to a canonical pose, from a single image.

Such a problem is crucial in many space proximity opera-

tions, such asdocking, debris removal, and inter-spacecraft

communications. Our approach combines machine learn-

ing and geometric optimisation, by predicting the coordi-

nates of a set of landmarks in the input image, associat-

ing the landmarks to their corresponding 3D points on an

a priori reconstructed 3D model, then solving for the ob-

ject pose using non-linear optimisation. Our approach is

not only novel for this specific pose estimation task, which

helps to further open up a relatively new domain for ma-

chine learning and computer vision, but it also demon-

strates superior accuracy and won the first place in the re-

cent Kelvins Pose Estimation Challenge organised by the

European Space Agency (ESA).

1. Introduction

Estimating the 6DOF pose of space-borne objects (e.g.,

satellites, spacecraft, orbital debris) is a crucial step in

many space operations such as docking, non-cooperative

proximity tasks (e.g., debris removal), and inter-spacecraft

communications (e.g., establishing quantum links). Exist-

ing solutions are mainly based on active sensor-based sys-

tems, e.g., the TriDAR system which uses LiDAR [12, 28].

Recently, monocular pose estimation techniques for space

applications are drawing significant attention due to their

lower power consumption and relatively simple require-

ments [11, 31, 30, 9].

Due to the importance of the problem, the Advanced

Concepts Team (ACT) at ESA recently held a bench-

mark competition called Kelvins Pose Estimation Chal-

lenge (KPEC) [3]; given images that depict a known satel-

lite under different unknown poses (see Figure 1), estimate

the pose of the satellite in each image. To develop their al-

Figure 1: Sample images of the Tango satellite from

SPEED [30]. Note the significant variations in object size,

object orientation, background and lighting condition.

gorithms, the challenge participants are given aset of train-

ing images containing the target satellite with ground truth

poses; Section 1.1 provides more details of the dataset.

The scenario considered in KPEC is a special case of

monocular vision-based object pose estimation [14, 34].

This is because the target object (the “Tango” satellite)

is known beforehand, and there is no need to generalize

the pose estimator to unseen-before instances of the object

class (e.g., other satellites). However, the background en-

vironment can still vary, as exemplified in Figure 1. Con-

trast the KPEC scenario to the generic pose estimation set-

ting [14, 34], where the provenance of the target object

is unknown a priori and generalising to unseen-before in-

stances is necessary (e.g., a car pose estimator must work

on all kinds of cars).
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ing solutions are mainly based on active sensor-based sys-

tems, e.g., the TriDAR system which uses LiDAR [12, 28].

Recently, monocular pose estimation techniques for space

applications are drawing significant attention due to their

lower power consumption and relatively simple require-

ments [11, 31, 30, 9].

Due to the importance of the problem, the Advanced

Concepts Team (ACT) at ESA recently held a bench-

mark competition called Kelvins Pose Estimation Chal-

lenge (KPEC) [3]; given images that depict a known satel-

lite under different unknown poses (see Figure 1), estimate

the pose of the satellite in each image. To develop their al-

Figure 1: Sample images of the Tango satellite from

SPEED [30]. Note the significant variations in object size,

object orientation, background and lighting condition.

gorithms, the challenge participants are given aset of train-

ing images containing the target satellite with ground truth

poses; Section 1.1 provides more details of the dataset.

The scenario considered in KPEC is a special case of

monocular vision-based object pose estimation [14, 34].

This is because the target object (the “Tango” satellite)

is known beforehand, and there is no need to generalize

the pose estimator to unseen-before instances of the object

class (e.g., other satellites). However, the background en-

vironment can still vary, as exemplified in Figure 1. Con-

trast the KPEC scenario to the generic pose estimation set-

ting [14, 34], where the provenance of the target object

is unknown a priori and generalising to unseen-before in-

stances is necessary (e.g., a car pose estimator must work

on all kinds of cars).
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gorithms, the challenge participants are given aset of train-

ing images containing the target satellite with ground truth

poses; Section 1.1 provides more details of the dataset.

The scenario considered in KPEC is a special case of

monocular vision-based object pose estimation [14, 34].

This is because the target object (the “Tango” satellite)

is known beforehand, and there is no need to generalize

the pose estimator to unseen-before instances of the object

class (e.g., other satellites). However, the background en-

vironment can still vary, as exemplified in Figure 1. Con-

trast the KPEC scenario to the generic pose estimation set-

ting [14, 34], where the provenance of the target object

is unknown a priori and generalising to unseen-before in-

stances is necessary (e.g., a car pose estimator must work

on all kinds of cars).
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Minimise orientation error:
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Baseline 2: End-to-end learning

Pros

• Easy to implement (PyTorch, 
TensorFlow, etc.).

• Tends to not fail catastrophically.

Cons

• Rather imprecise/inaccurate.

• Not explainable.
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Combine deep learning and geometry
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Combine deep learning and geometry

Offline processing
by Tat-Jun Chin, University of Adelaide 25



Build 3D model (selected landmarks only)

also generates 2D-3D correspondences; however, we use a

trained deep network to regress the coordinates of 2D land-

marks.

The Spacecraft Pose Network (SPN) [30] is the semi-

nal work on the SPEED. SPN uses a hybrid of classifica-

tion and regression neural networks for the pose estimation

problem. To perform classification, SPN discretises the 3D

rotation group SO(3) into m uniformly distributed base ro-

tations. SPN first predicts the bounding box of the satellite

in the image with an object detection sub-network. Then, a

classification sub-network retrievesthen most relevant base

rotations from the feature map of the detected object. This

regression sub-network learns a set of weights and outputs

the predicted rotation as a weighted average of the n base

rotations. Lastly, SPN solves the relative translation of the

satellite utilising constraints from the predicted bounding

box and rotation.

For a more comprehensive survey of spacecraft pose es-

timation, we refer the reader to [9].

3. Methodology

Figure 2 describes the overall pipeline of our methodol-

ogy, which consists of several main modules: using asmall

subset of manually chosen training images (9 images were

chosen), we first reconstruct a 3D structure of the satellite

with a number of manually chosen landmarks (11 was cho-

sen in our implementation) viamulti-view triangulation (re-

call that thetraining imagesweresupplied with ground truth

poses). An object detection network is then used to predict

the2D bounding box of thesatellite in the input image. The

bounded subimage is then subjected to a landmark regres-

sion network to predict the 11 landmark image positions.

Finally, we solve for the poses using the predicted 2D-3D

correspondences. Details of the main steps are described in

the rest of this section. Our code is available in [4].

3.1. Multi-view tr iangulation

We represent the structure of the object with a small

number N of 3D landmarks { x i }
N
i = 1 such that they cor-

respond to strong visual features in the images. For the

satellite, we select its eight corners plus the centres of the

ends of its three antennas, which make a total of N = 11

landmarks. We use multi-view triangulation to reconstruct

the 3D structure. To generate the input for triangulation

(i.e., 2D-3D correspondences), we manually match every

3D point with 2D corresponding points over a few hand-

picked close-up images from the training set. Let zi ,j de-

note the 2D coordinates of the i -th landmark obtained from

the j -th image, the3D landmarks { x i } arereconstructed by

Figure 5: The reconstructed 3D model with 11 landmarks

and 3 examples of the bounding boxes determined by the

projected 2D landmarks.

solving the following objective1:

min
{ x i } N

i = 1

X

i ,j

||zi ,j − ⇡T ⇤
j
(x i )||

2
2 , (1)

where T ⇤
j is the ground truth pose of image j and ⇡T is the

projectivetransformation of astructural point into theimage

plane with pose T and known camera intrinsics. Figure 5

shows the 11 selected 3D landmarks and the reconstructed

model as a wireframe.

3.2. Object detection

Our pipeline starts by obtaining a bounding box of the

object in the image. The aforementioned set of structural

landmarks { x i } facilitates object detection since the con-

vex hull of their 2D matches { zi } covers almost the whole

object in any image. Hence a simple but effective method

to obtain the ground truth bounding box is to slightly relax

the (axis-aligned) minimum rectangle that encloses all zi ,

as shown in Figure 5. We use this method for the training

images for which we obtain the ground truth 2D landmarks

{ z⇤i } by projecting { x i } to the imageplanewith theground

truth camera pose T ⇤, i.e.,

z⇤i = ⇡T ⇤(x i ), i = 1, ..., N . (2)

For the testing images, we train an object detection

model to predict the bounding boxes. We use an off-

the-shelf object detection model described in [33], which

applies an HRNet as backbone in the Faster-RCNN [27]

framework. The HRNet backbone is initialised with a pre-

trained model HRNet-W18-C2 [33]. We train the detection

model on the MMDetection platform [10] and follow the

training settings as in [33].

1Weused the routine t r i angul at eMul t i vi ew in MATLAB.
2Thepretrained model wasdownloaded from [2].
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...

Selected training images with
manually ”clicked” landmarks

Multi-view 
triangulation
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Multi-view triangulation

• Given 2D observations                       of a landmark and camera pose 
behind each observation            , solve

where                    computes the pinhole projection of 3D point       onto 
image with camera pose     .

• Typical algorithm: get initial solution using algebraic least squares, 
then refine using nonlinear least squares (Levenberg-Marquardt).

by Tat-Jun Chin, University of Adelaide 27



Combine deep learning and geometry

Online processing, offline training, standard object detection method (Faster RCNN)
by Tat-Jun Chin, University of Adelaide 28



Combine deep learning and geometry

Online processing, offline training

by Tat-Jun Chin, University of Adelaide 29



Landmark regression using HRNet

Figure 2: Overall pipeline of our satellite pose estimator.

Under the KPEC setting, we developed a monocular

pose estimation technique for space-borne objects such as

satellites. Inspired by works that combine the strength of

deep neural networks and geometric optimisation [26, 25,

35], our approach contains three main components:

1. using the training images, reconstruct a 3D model of

the satellite by multi-view triangulation;

2. train a deep network to predict the position of pre-

defined landmark points in the input image;

3. solve for the pose of the object in the image using the

2D-3D correspondences of the predicted landmarks

via robust geometric optimisation.

A high level pipeline of our framework is illustrated in Fig-

ure 2. Our code can be accessed in [4].

As suggested above, our method fully takes advantages

of all available data and assumptions of the problem. This

plays a significant role in producing highly-accurate 6DOF

pose estimation for the KPEC. Specifically, our method

commits an average cross validation (CV) error of 0.7277

degrees for orientation and 0.0359 metres for translation

on the KPEC training set. We achieved an overall score

of 0.0094 on the test set which ranked us the first place in

KPEC. The rest of the paper first reivews related works and

then describes our method and results in detail.

1.1. Dataset

The KPEC was designed around the Spacecraft PosE

Estimation Dataset (SPEED) [30], which consists of high-

fidelity grayscale images of the Tango satellite; see Fig-

ure 1. There are 12,000 training images with ground

truth 6DOF poses (position and orientation) and 2,998 test-

ing images without ground truth. Each image is of size

1920⇥1200 pixels. Half of the available images have no

background (i.e., the background is the space void) while

the other half contain the Earth as the background. Mirror-

ing the setting during proximity operations, the size, orien-

tation and lighting condition of the satellite in the images

vary significantly, e.g., the number of object pixels vary be-

tween 1k and 500k; see Figure 3 for an example. For more

details of the dataset, see [30].

2. Related works

Monocular vision-based pose estimation has a large

body of literature. We review the major classes of previ-

ous work, before surveying the specific case of spacecraft

pose estimation.

2.1. Monocular pose estimation

Keypoint methods Traditional pose estimation tech-

niques usually use hand-crafted keypoint detectors and de-

scriptors, e.g., SIFT [21, 20], SURF [6], MSER [22] and

BRIEF [8]. The key step is to produce a set of 2D-2D or

2D-3D keypoint correspondences, then estimate the pose

using non-linear optimisation from the correspondence set.

The keypoints are detected automatically and described us-

ing heuristic measures of geometric and photometric in-

variance. However, while the keypoint methods are robust

to a certain extent, they typically fail where there is large

variations in pose and lighting conditions. Nonetheless,

the earlier research has given birth to effective and well-

Figure 3: Large variation in object size in the images.
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HRNet by Sun et al., Deep high-resolution representation learning for
human pose estimation, CVPR 2019.
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Sample results: object detection and 
landmark regression

Figure8: A montageof random test imageswith thepredicted bounding boxesof thesatellite and theestimated 2D landmarks.

Figure 9: A montage of the same test images in Figure 8 with the predicted poses shown as green wireframes.

by Tat-Jun Chin, University of Adelaide 31



Combine deep learning and geometry

Online processing (basically PnP problem)

by Tat-Jun Chin, University of Adelaide 32



Perspective-n-point (PnP)

• Given 2D observations                       of a set of landmarks               , 
solve for the camera pose

where                    computes the pinhole projection of 3D point        onto 
image with camera pose     .

• Typical algorithm: get initial solution using algebraic least squares, 
then refine using nonlinear least squares (Levenberg-Marquardt).

by Tat-Jun Chin, University of Adelaide 33



Sample results: pose estimation (displayed as 
projection of 3D wireframe model)Figure8: A montageof random test imageswith thepredicted bounding boxesof thesatelliteand theestimated 2D landmarks.

Figure 9: A montage of the same test images in Figure 8 with the predicted poses shown as green wireframes.

by Tat-Jun Chin, University of Adelaide 34



Potential future work



Exploit temporal continuity

by Tat-Jun Chin, University of Adelaide 36

https://www.youtube.com/watch?v=f87hldU41_I


Joint estimation of pose and dense 3D model 
from single image

Figure from Shin et al., CVPR 2018.
by Tat-Jun Chin, University of Adelaide 37



Cope with intra-class variations

• Challenges:
• Can the same set of landmarks be used for different satellites?

• Can the object detector cope with intra-class variations?

by Tat-Jun Chin, University of Adelaide 38



Visual affordance estimation

by Tat-Jun Chin, University of Adelaide 39

Figures from Hassanin et al., Visual Affordance and Function Understanding: A Survey.



Thank you!


