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Australian °
Space Agency

e Established 1 July 2018.
* Annual budget: $9.8 Million (tiny!)
* Roles:

+ Providing national policy and strategic
advice on the civil space sector.

 Coordinating Australia's domestic civil
space sector activities.

© Supporting the growth of Australia’s
space industry and the use of space
across the broader economy.

« Leading international civil space
engagement.

* Administering space activities
legislation =nd delivering on our
international obligations.

* Inspiring the Australian community and
the next generation of space
entrepreneurs.

by Tat-Jun Chin, University of Adelaide



SMARTSATCRC

BUILDING
AUSTRALIA'S
SPACE
INDUSTRY

The SmartSat CRC is a consortium of industry and
research organisations that will develop game
changing technologies to bootstrap Australia’s space
industry and catapult it into the 1/2 trillion dollar global
economy.

We invite you to join us in this nation-building journey.

by Tat-Jun Chin, Universi
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On to pose estimation...



Kelvins Pose Estimation Challenge

* Given an image of a satellite,
estimate its 6DoF pose (position,
orientation) w.r.t. to the observing
camera.

e Available data:

* Training images of satellite with
ground truth pose.

* Challenges:
* Varying lighting, scale, background.

* Assumptions:
* It’s always the same satellite...

by Tat-Jun Chin, University of Adelaide
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More general pose estimation

* Usually needs to work on an
object class (e.g., faces, cars).

e Significant variations in the
instances of the object class.

* Significant variations in object
and environmental conditions.



Baseline 1: Geometric technique

SIFT, SURF, etc.
Testing image

by Tat-Jun Chin, University of Adelaide

Pre-selected training image 1

Pre-selected training image 2

Pre-selected training image N
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Keypoint matching and detection
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by Tat-Jun Chin, University of Adelaide



Structure-from-motion

e Given observations of a set of 3D points in a number of images,
estimate the coordinates of the 3D points and relative poses of the
cameras (that captured the images).

camera image k

Source: [openmvg.readthedocs.org/en/latest/ images/structureFromMotion.png]

by Tat-Jun Chin, University of Adelaide
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http://openmvg.readthedocs.org/en/latest/_images/structureFromMotion.png

by Tat-Jun Chin, University of Adelaide



FOV: 60 Mesh: sc3d.ply

EPS: 505 Vertices: 10,969

BO_RENDERING Faces: 0
Selection: v: 0 f: 0

by Tat-Jun Chin, University of Adelaide




Baseline 1: Geometric technique

SIFT, SURF, etc. Pre-selected training image 1

Pre-selected training image 2

Target satellite

(about 30x30 pixels)
Pre-selected training image N

by Tat-Jun Chin, University of Adelaide
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Baseline 1: Geometric technique

Pros Cons

* Gives very accurate pose * Fails catastrophically on images
estimates when it works — when that don’t work — target too
sufficient good keypoint small, background too cluttered.

matches can be established.



Baseline 2: End-to-end learning
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Baseline 2: End-to-end learning
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Baseline 2: End-to-end learning

Pros Cons

e Easy to implement (PyTorch, * Rather imprecise/inaccurate.

TensorFlow, etc.). e Not explainable.

* Tends to not fail catastrophically.



Combine deep learning and geometry

Input image

Crop and
resize

Object
detection

Landmark
regression

2D landmarks

Multi-view
triangulation

Pose
estimation

Output pose




Combine deep learning and geometry

Input image

Crop and
resize

Object
detection

2D landmarks

Landmark
regression

3D landmarks

Multi-view
triangulation

Offline processing

by Tat-Jun Chin, University of Adelaide

Pose
estimation

Output pose
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Build 3D model (selected landmarks only)

\' Multi-view
‘

-Jun Chin, University of Adelaide

Selected training images with
manually “clicked” landmarks
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Multi-view triangulation

* Given 2D observations {(zi,v:)}i=: of a landmark and camera pose p;
behind each observation (z;,y;), solve

mmz (i) = F(X [ Pa)ll5

where f(X |p;) computes the pinhole projection of 3D point X onto
image with camera pose p; .

e Typical algorithm: get initial solution using algebraic least squares,
then refine using nonlinear least squares (Levenberg-Marquardt).



Combine deep learning and geometry

Input image

Landmark
regression

2D landmarks

3D landmarks

Multi-view
triangulation

Object
detection

e

Pose
estimation

Output pose

Online processing, offline training, standard object detection method (Faster RCNN)

by Tat-Jun Chin, Unlver5|ty of Adelaide



Combine deep learning and geometry

Online processing, offline training

Input image 2D landmarks

Crop and X Landmark | 2
resize regression [P Output pose

Pose
estimation

3D landmarks

Multi-view
triangulation

Object
detection

by Tat-Jun Chin, University of Adelaide 29



Landmark regression using HRNet

HRNet by Sun et al., Deep high-resolution representation learning for Landmark Ground truth
human pose estimation, CVPR 20109. heatmap landmarks

O

-\

feature  conv. down
map unit Sampling sampling

conv1

Loss function

(= % ; vi(h(zi) — h(z}))?

by Tat-Jun Chin, University of Adelaide 30



Sample results: object detection and
landmark regression

31



Combine deep learning and geometry

Online processing (basically PnP problem)

Input image 2D landmarks

Crop and Landmark |
resize regression | o Output pose
Pose
estimation
3D landmarks
Object Multi-view
detection triangulation

by Tat-Jun Chin, University of Adelaide 32



Perspective-n-point (PnP)

* Given 2D observations {(=:, )}, of a set of landmarks {Xi}i 1,
solve for the camera pose p

mmZH zi,yi) — F(Xi | p)Il3

where f(X;|p) computes the pinhole projection of 3D point X; onto
image with camera pose p .

e Typical algorithm: get initial solution using algebraic least squares,
then refine using nonlinear least squares (Levenberg-Marquardt).



Sample resu
projection o

ts: pose estimation (displayed as

3D wireframe model

g
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Potential future work



Exploit temporal continuity

File Edit View Insert Tools Desktop Window Help

1- clear all U sde & OB K E
2
3~ gt_file = 'kitti_poses/00.txt"'; 25 T -
4- gt_data = importdata(gt_file);
5
6 - m = size(gt_data,1);
7
8 - rabs_gt_all = zeros(3,3,m); E
C= for i=1:1:m rat
10 - P = reshape(gt_data(i,:),[4,3])"; &
11 - rabs_gt_all(:,:,i) = P(1:3,1:3)'; s
a2 = end %
13 3
14 - T= timer_plot_roterror_kitti(rabs_gt_all);
15 %%
16 - start(T);|
I - 700
script Ln 16 Col 10 frame id

# matches for (516, 519) = 177

# matches for (515, 519) = 126

frame 519 -- runtimes: frame creation 0.0471; frame processing 0.326, rotavg 9.001
# matches for (518, 520) =

# matches for (517, 520) = 148

# matches for (516, 520) = 138

frame 520 -- runtimes: frame creation 0.0461; frame processing ©.357, rotavg 0.001

skipping frame - local rad = 3.88048

# matches for (519, 521) = 175
# matches for (518, 521) = 143
cannot connect (517, 521) -~ insufficient matches: 98

frame 521 -- runtimes: frame creation 0.0461; frame processing ©.312, rotavg 0.001
# matches for (520, 522) =

# matches for (519, 522) = 154

by Tat-Jun Chin, University of Adelaide
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https://www.youtube.com/watch?v=f87hldU41_I

Joint estimation of pose and dense 3D model
from single image
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Figure from Shin et al., CVPR 2018.

by Tat-Jun Chin, University of Adelaide 37
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Cope with intra-class variations

* Challenges:
e Can the same set of landmarks be used for different satellites?
* Can the object detector cope with intra-class variations?

by Tat-Jun Chin, University of Adelaide 38



Visual affordance estimation

t Hitye Affordances: Containable, Pourable
Comamab'my' Empty Functionalities: Moving liquids, Drinking liquids

Volume Estimate: 150 mL

Size: medium

—

- COFFEE
IS NOT
MY CUP

OF TEA.

Functionalities: Holding up, Movin

Can be broken if children
hold it? No

Figures from Hassanin et al., Visual Affordance and Function Understanding: A Survey.
by Tat-Jun Chin, University of Adelaide
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Thank you!



