

DeepSUM: Deep neural network for Superresolution of Unregistered Multitemporal images

Andrea Bordone Molini, **Diego Valsesia**, Giulia Fracastoro, Enrico Magli

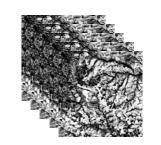
Politecnico di Torino

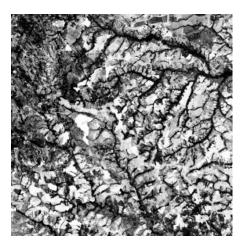
Kelvins day 11/9/2019

Deep learning for super-resolution

• **SISR:** single LR image

- Exploit spatial correlation, prior knowledge about "natural images"
- Widely studied (model-based, deep learning, ...)
- MISR: multiple LR images to one HR image
 - Prior knowledge about "natural images" but also...
 - ...correlation across multiple subpixel-shifted LR images
 - Very little work with deep learning, especially for remote sensing

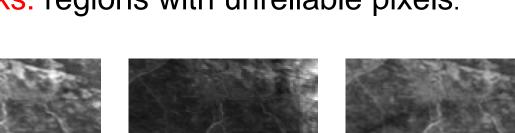


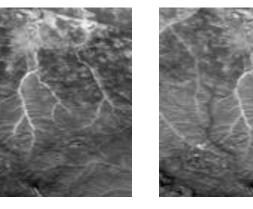


3

Dataset and issues

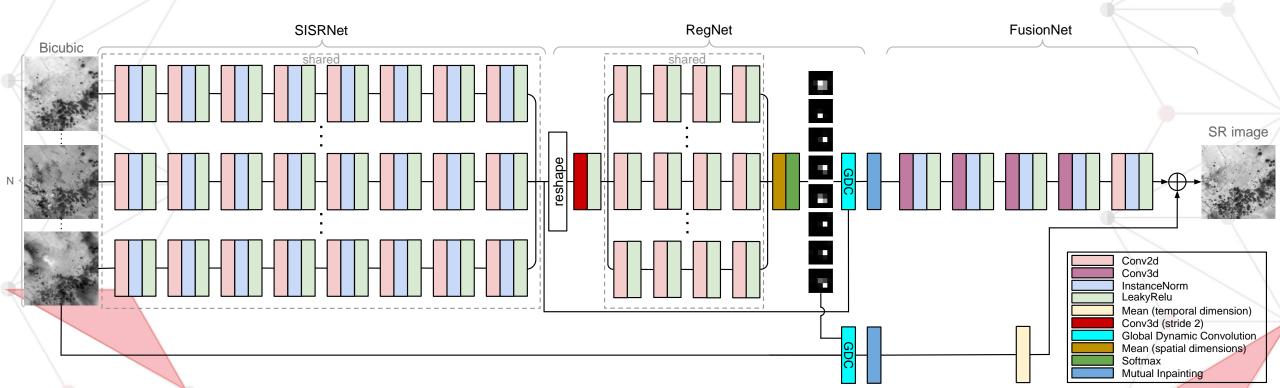
- Images from RED and NIR spectral bands at 300m and 100m resolution.
 - LR:128x128 pixels
 - HR: 384x384 pixels
- Issues:
 - Concealed regions:
 - i.e. clouds, cloud shadows, ice, water, missing regions
 - Change in brightness and content:
 - the images have been recorded within a time window of 30 days
 - Unregistered images
- Masks: regions with unreliable pixels.





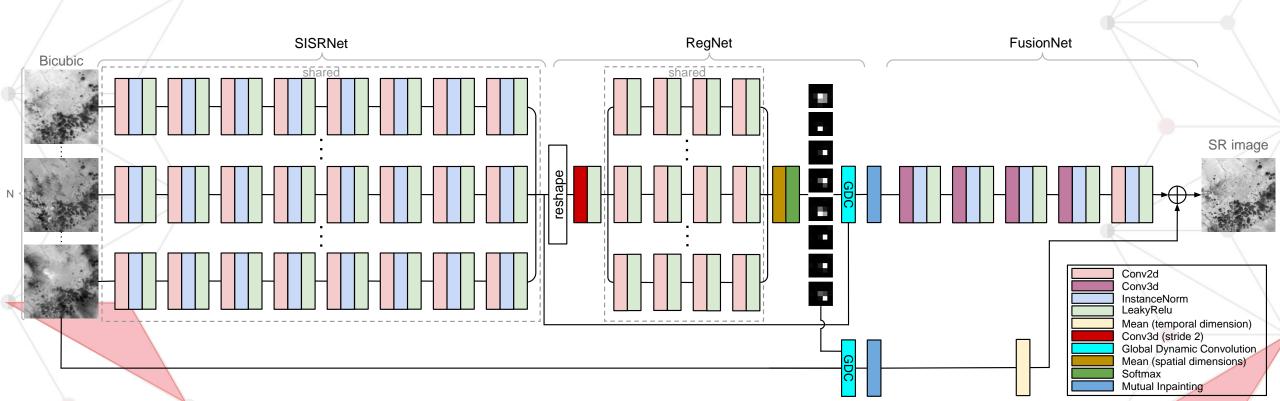
DeepSUM

- **DeepSUM** relies on a single residual CNN with three main stages:
 - SISRNet: shared 2D convolutions to extract high-dimensional features;
 - RegNet: subnetwork proposing registration filters from the high-dimensional features;
 - FusionNet: 3D convolutions for slow fusion of the features from multiple images.
- Tricks: residual, inpainting of masked regions



DeepSUM

- Pretrain SISRNet and RegNet separately with a task-specific objective
- Finetune everything with the super-resolution objective

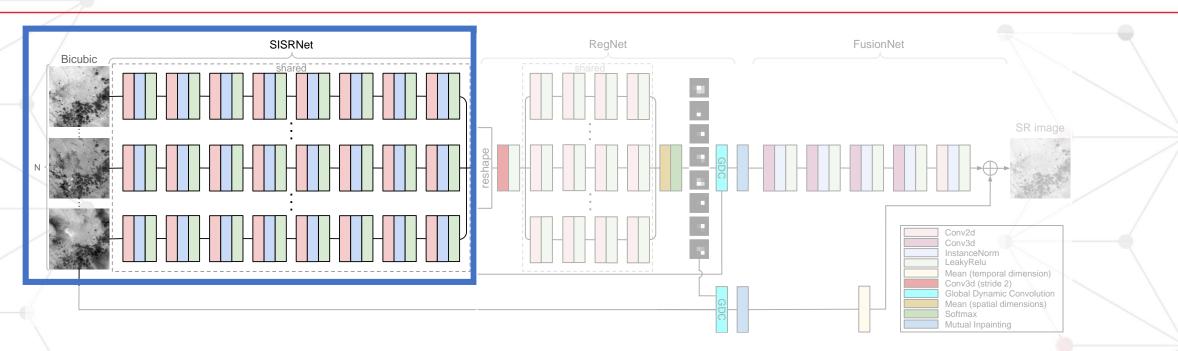


Loss

- Robustness to many factors:
 - The brightness of the HR image may be different from that of the SR image
 - The SR image and the HR image may be unregistered.
- Compensate absolute brightness difference
- Test all SR-HR alignments and select best
- Same as challenge scoring function

$$\begin{split} L &= \min_{u,v \in [0,2d]} \|I_{u,v}^{\mathrm{HR}} - (I_{\mathrm{crop}}^{\mathrm{SR}} + b)\|^2 \\ b &= \frac{1}{(rW - d)(rH - d)} \sum_{x,y} \left(I_{u,v}^{\mathrm{HR}} - I_{\mathrm{crop}}^{\mathrm{SR}}\right) \end{split}$$

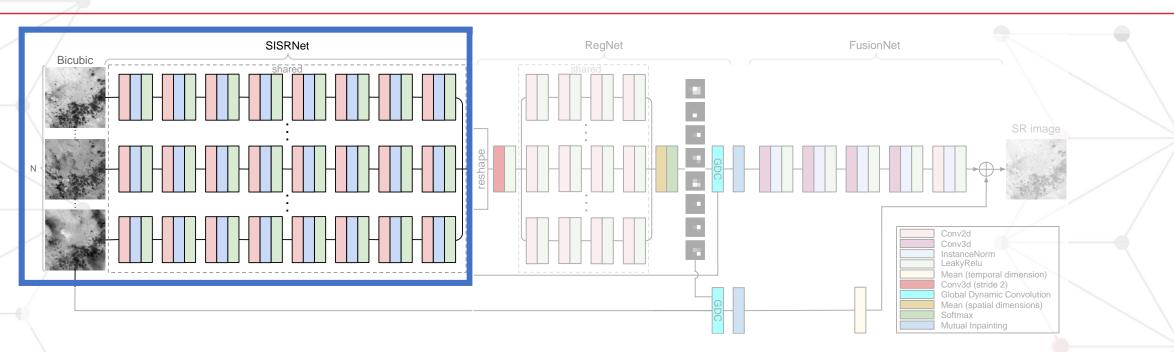
SISRNet



Goals:

- create a high-dimensional feature space suitable for downstream tasks
- exploit intra-image correlation to perform single-image SR

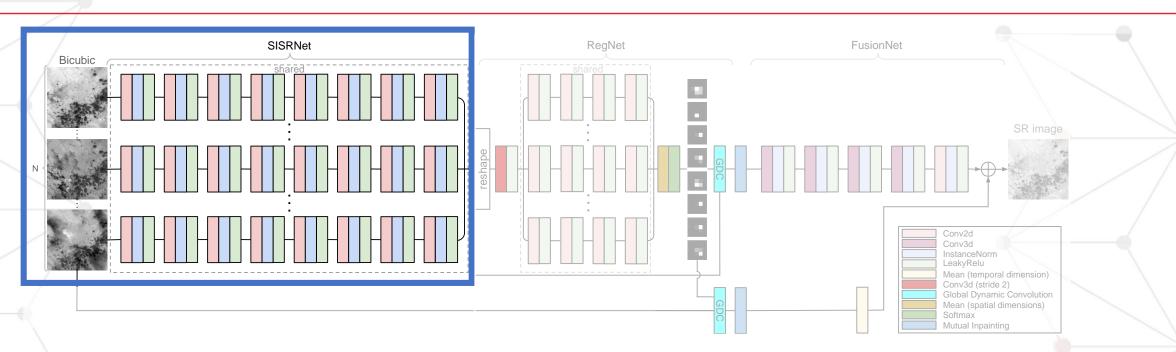
SISRNet



Architecture:

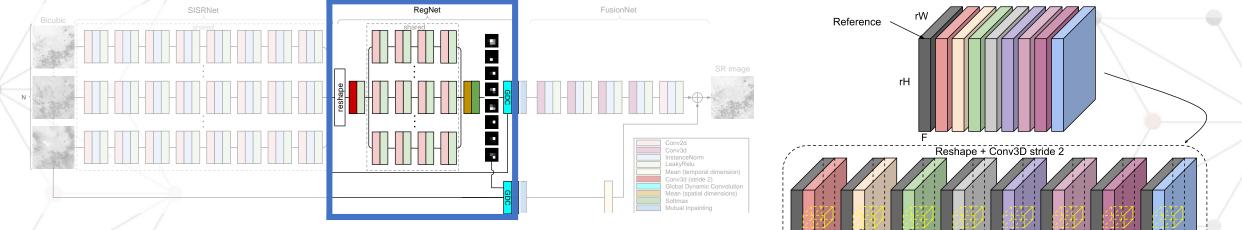
- Input: bicubically upsampled images
- Conv2D InstanceNorm LeakyRelu shared across images
- can be improved integrating latest works on SISR
- InstanceNorm > BatchNorm : contrast and brightness variations among training images within a batch may cause instability

SISRNet

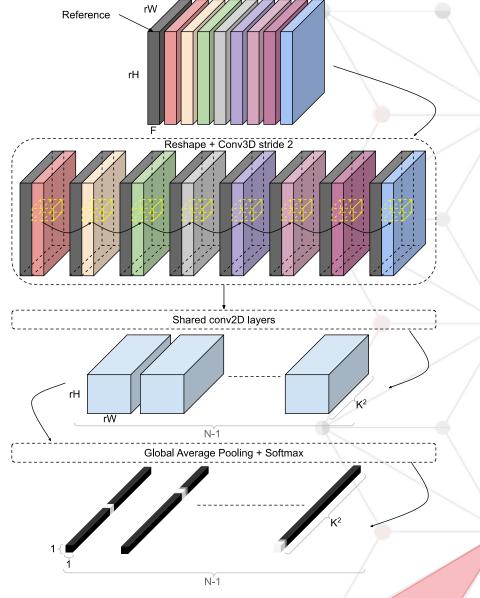


Pretraining:

- add a final convolutional layer to map from F features to 1 channel
- train with SR loss function
- remove final layer: we want to keep working in the feature space in the full architecture



- Register the N image representations coming from SISRNet
- Registration relative to the first image
- Two sub-blocks:
 - CNN: outputs *N-1* registration filters (9x9)
 - global dynamic convolutional layer (GDC): applies the filters to the feature maps



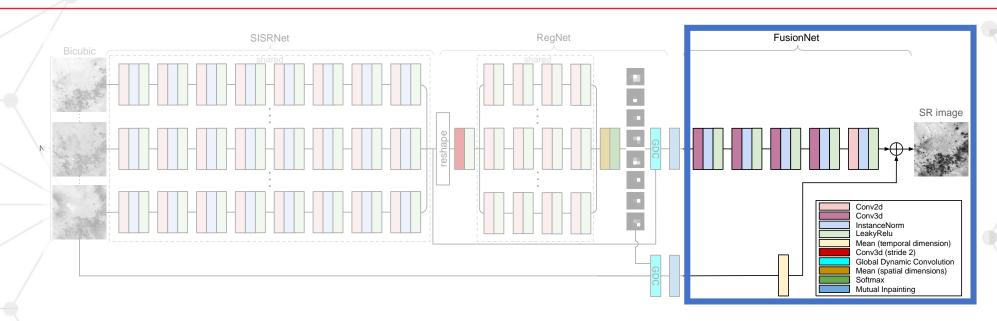
RegNet - pretraining

- Generate a dataset of high-dimensional features
 - Pass the training images through SISRNet
- Generate N-1 versions of the first image with synthetic shifts
- Train with cross-entropy objective between output filters and ideal filters
 - "Ideal" registration filters are delta functions centered at the right shift

RegNet – Pros and Cons

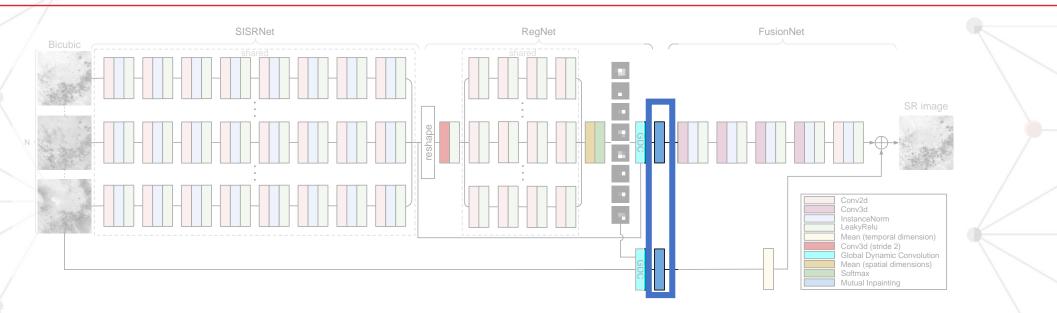
_	Image cross-correlation	Fixed kernel – learned shifts	RegNet
	Shift = max of cross correlation in image space	Shift = predicted by a neural net in feature space	Shift and interpolation kernel predicted by a neural net
_	Fixed interpolation kernel	Fixed interpolation kernel	
	Very sensitive to image content	Robust to image content	Robust to image content
_	Non-adaptive interpolator (artifacts)	Non-adaptive interpolator (artifacts)	Adaptive interpolator (reduces artifacts)
Þ	Does not require training	Easy to train (2 output parameters)	Complex to train for large shifts

FusionNet



- FusionNet subnetwork progressively fuse the N registered outputs delivered by RegNet in a "slow" manner in the feature space
 - 3D convolutional layers without padding

Mutual inpainting



- Images contain masked areas with unreliable values (clouds, corruptions, ...)
- Reliable fusion must discard such areas
- Fill unrealiable areas of feature maps with feature values from other images
- (Masks are also aligned with registered feature maps by GDC)

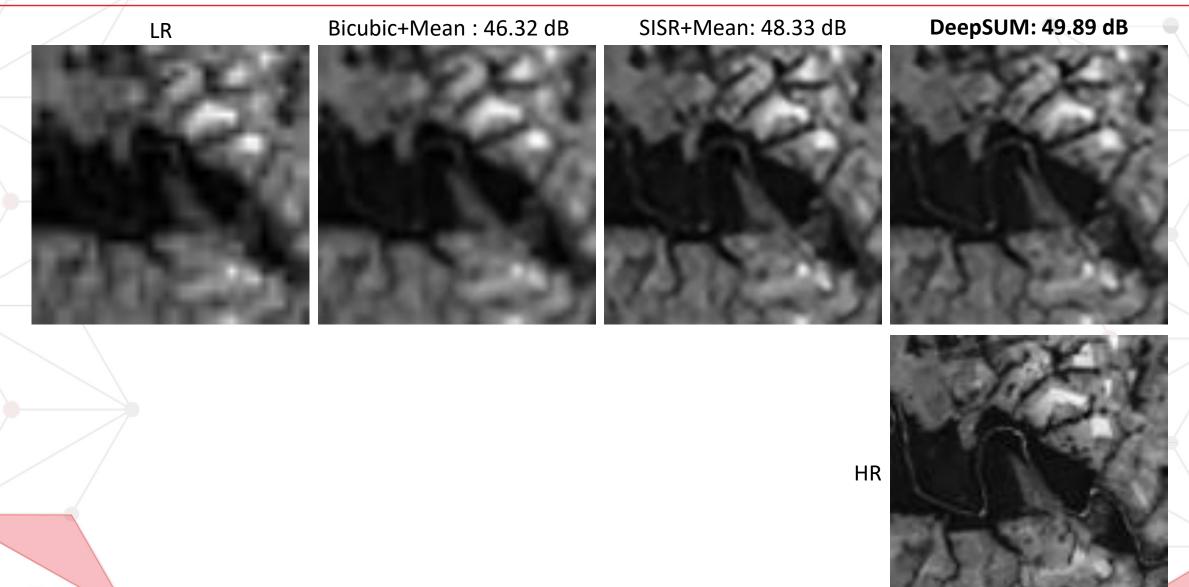
Residual

- Global input-output residual connection: learn how to fix bicubic upsampling
- Bicubically-upsampled input
 - > Registration with the dynamic filters
 - > Inpainting
 - > Average

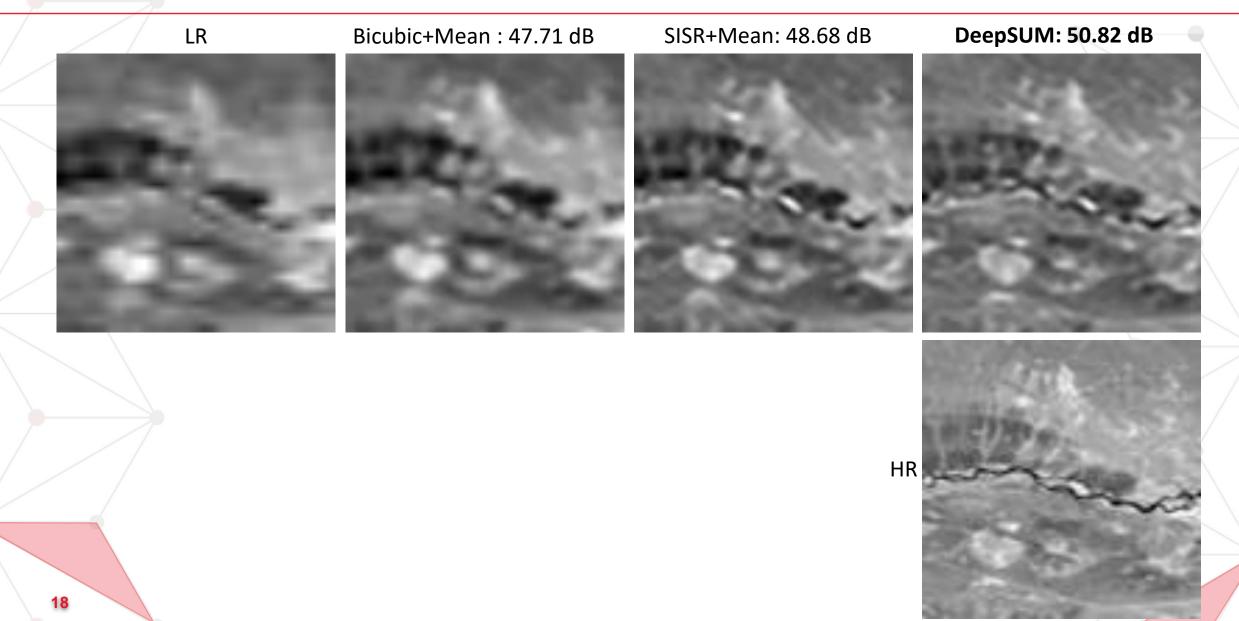
Testing with more images

- DeepSUM requires a fixed number of input images: N
- More than N images can be used by combining multiple Nimages estimates
- In the challenge we used a sliding window approach
 - Sort test images by increasing amount of masked pixels
 - SR estimate from a window of N=9 images
 - Move window by 1 image

Qualitative Results (RED)



Qualitative Results (NIR)



Quantitative Results

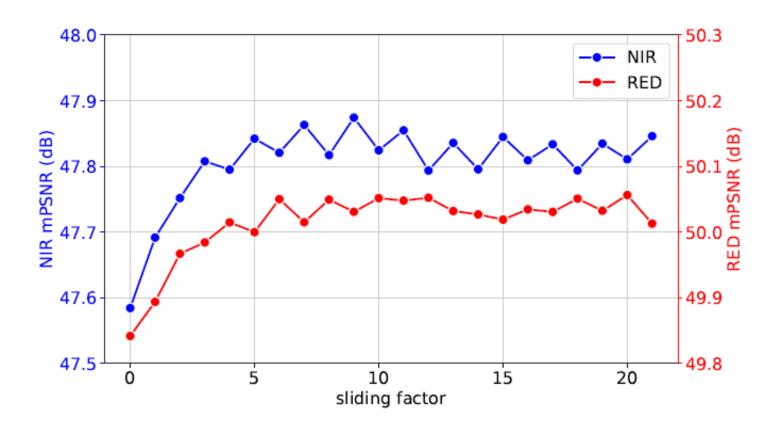
TABLE I Average mPSNR (db) - RegNet Performance

	Proposed without RegNet	Proposed with RegNet
NIR	47.68	47.84
RED	49.87	50.00

TABLE II Average mPSNR (db)

_	Bicubic+Mean	IBP [36]	SISR	SISR+Mean	DUF [58]	DeepSUM
NIR	45.69	45.96	45.56	46.57	47.06	47.84
RED	47.91	48.21	48.20	48.82	49.36	50.00

Quantitative Results



- Using more than 9 LR images helped
- Using more than the 15 least masked images did not improve performance

Future work

• SISRNet

 Non-local models: recent work on extending convolutional layers to include non-locality. See:

D. Liu, B. Wen, Y. Fan, C. C. Loy, T. S. Huang, «*Non-Local Recurrent Network for Image Restoration*», NeurIPS 2018

D. Valsesia, G. Fracastoro, E. Magli, «*Deep Graph-Convolutional Image Denoising*», arXiv:1907.08448

Journal reference

A. Bordone Molini, D. Valsesia, G. Fracastoro, E. Magli –"*DeepSUM: Deep neural network for Super-resolution of Unregistered Multitemporal images*" under review IEEE Transactions on Geoscience and Remote Sensing

arXiv:1907.06490 preprint Code: github.com/diegovalsesia

Poster at IEEE WHISPERS 2019

www.ipl.polito.it Follow us on Twitter: @IPLPolito