

Additive Manufacturing of Leaky-Wave Antennas

Aurélie Dorlé, Raphaël Gillard, Esteban Menargues, Maarten Van Der Vorst, Emile De Rijk, Petronilo Martín-Iglesias and María García-Vigueras

1 RF Payloads and Technology - Final Presentation Days 2020 – 22/01/2020

- 1. Context
- 2. Additive Manufacturing
- 3. Additive Manufacturing of Leaky-Wave Antennas
- 4. Conclusion and Perspectives

1. Context

- 2. Additive Manufacturing
- 3. Additive Manufacturing of Leaky-Wave Antennas
- 4. Conclusion and Perspectives

Context Additive Manufacturing of Leaky-Wave Antennas

IETR laboratoty

European Space Agency

SWISSto12

1. Context

2. Additive Manufacturing

- Definition and Properties
- Stereolithography
- Selective Laser Melting
- Comparison of the Processes
- Examples of Antennas
- 3. Additive Manufacturing of Leaky-Wave Antennas
- 4. Conclusion and Perspectives

1. Context

2. Additive Manufacturing

- Definition and Properties
- Stereolithography
- Selective Laser Melting
- Comparison of the Processes
- Examples of Antennas
- 3. Additive Manufacturing of Leaky-Wave Antennas
- 4. Conclusion and Perspectives

- Additive Manufacturing groups the technics enabling to fabricate objects with a layer-by-layer process
- Advantages

- Additive Manufacturing groups the technics enabling to fabricate objects with a layer-by-layer process
- Advantages
 - Free-Form Manufacturing

- Free-Form Manufacturing
- Monolithic Fabrication

- Free-Form Manufacturing
- Monolithic Fabrication
- Cost Saving

- Free-Form Manufacturing
- Monolithic Fabrication
- Cost Saving
- Wide Choice of Materials

- Free-Form Manufacturing
- Monolithic Fabrication
- Cost Saving
- Wide Choice of Materials
- Precision and Tolerances?

1. Context

2. Additive Manufacturing

- Definition and Properties
- Stereolithography
- Selective Laser Melting
- Comparison of the Processes
- Examples of Antennas
- 3. Additive Manufacturing of Leaky-Wave Antennas
- 4. Conclusion and Perspectives

Stereolithography (SLA)

14 RF Payloads and Technology - Final Presentation Days 2020 – 22/01/2020

1. Context

2. Additive Manufacturing

- Definition and Properties
- Stereolithography
- Selective Laser Melting
- Comparison of the Processes
- Examples of Antennas
- 3. Additive Manufacturing of Leaky-Wave Antennas
- 4. Conclusion and Perspectives

Selective Laser Melting (SLM) Similar to DMLS

1. Context

2. Additive Manufacturing

- Definition and Properties
- Stereolithography
- Selective Laser Melting
- Comparison of the Processes
- Examples of Antennas
- 3. Additive Manufacturing of Leaky-Wave Antennas
- 4. Conclusion and Perspectives

Comparison of SLA and SLM

Property of the Device	SLA	SLM
Size	Limited by the Machine	
Weight	Light	Metal Parts
Robustness	Low	High
Thermal Handling	No	Yes
Precision of the Process	0.02 – 0.05 mm	0.05 – 0.15 mm
Roughness	Low < 10 μm	High Corrected with Post-Processing Porous Structure = Bad Conductivity
Limitations	Metallization Complexity	No Closed Structure

1. Context

2. Additive Manufacturing

- Definition and Properties
- Stereolithography
- Selective Laser Melting
- Comparison of the Processes
- Examples of Antennas
- 3. Additive Manufacturing of Leaky-Wave Antennas
- 4. Conclusion and Perspectives

SLA and SLM Antennas

 Slotted array,
SLA / DMLS,
[G. P. Le Sage, 2016, IEEE Access]

Bull's-eye,
Stereolithography (SLA),
[U. Beaskoetxea, 2017,
IEEE TAP]

Horn Cluster, DMLS,[M. Kilian, 2019, EuCAP]

- 1. Context
- 2. Additive Manufacturing

3. Additive Manufacturing of Leaky-Wave Antennas

- What is a Leaky-Wave Antenna?
- Single-Polarized Structure
- Dual-Polarized Structure
- Single-Polarized Array
- Circularly-Polarized Antenna
- 4. Conclusion and Perspectives

- 1. Context
- 2. Additive Manufacturing
- 3. Additive Manufacturing of Leaky-Wave Antennas
 - What is a Leaky-Wave Antenna?
 - Single-Polarized Structure
 - Dual-Polarized Structure
 - Single-Polarized Array
 - Circularly-Polarized Antenna
- 4. Conclusion and Perspectives

- Guided structure which lets energy leak in a controlled way to get a desired radiation pattern
- Complex propagation component: $k_{z/\rho}(\omega) = \beta(\omega) j\alpha(\omega)$
 - $\alpha(\omega)$ leakage rate : controls pattern shape, radiation efficiency
 - $\beta(\omega)$ phase constant : controls pointing angle

[C. Caloz, 2010, Leaky-Wave Antennas]

CentraleSupélec

- 1. Context
- 2. Additive Manufacturing

3. Additive Manufacturing of Leaky-Wave Antennas

- What is a Leaky-Wave Antenna?
- Single-Polarized Structure
- Dual-Polarized Structure
- Single-Polarized Array
- Circularly-Polarized Antenna
- 4. Conclusion and Perspectives

Single-Polarized Antenna Structure

Single V-polarization

Tuning parameters: slot length and ridge height

2020 CentraleSupélec INSA UNIVERSITÉ DE RENNES

- Sidelobe Level Reduction in Ridged Leaky Waveguide Through Stereolithography, A. Dorlé, 2019, EuCAP]
- 25 RF Payloads and Technology Final Presentation Days 2020 22/01/2020

Single-Polarized Antenna

Performance

SLL reduction of 7 dB

Single-Polarized Antenna

Measurement

� 30 GHz

 $\bigstar L_A = 10.8\lambda$

Matched below – 10 dB between 26.5 and 40 GHz

- 1. Context
- 2. Additive Manufacturing

3. Additive Manufacturing of Leaky-Wave Antennas

- What is a Leaky-Wave Antenna?
- Single-Polarized Structure
- Dual-Polarized Structure
- Single-Polarized Array
- Circularly-Polarized Antenna
- 4. Conclusion and Perspectives

Dual-Polarized Antenna

Structure

Dual-linear polarization

- [Additive Manufacturing of Modulated Triple-Ridge Leaky-Wave Antenna, A. Dorlé, 2018, IEEE AWPL]
- 29 RF Payloads and Technology Final Presentation Days 2020 22/01/2020

Tuning parameters:
slots lengths and ridges heights

Dual-Polarized Antenna

Measurement

23.18GHz

23.28GHz 23.38GHz

Radiation pattern (dB), Φ=90° plane

Dual-Polarized Antenna

Measurement

✤ 23.28 GHz

- Iridium ISL band
- $\clubsuit L_A = 15.83\lambda$

Matched below – 10 dB from 22.3 to 25.2 GHz

✤ Isolation better than – 40 dB

 $\bigstar D_{max}^H = 18.22 \text{ dB}$

- 0.17 < simulation
- $D_{max}^V = 17.84 \text{ dB}$ 0.31 < simulation

- 1. Context
- 2. Additive Manufacturing

3. Additive Manufacturing of Leaky-Wave Antennas

- What is a Leaky-Wave Antenna?
- Single-Polarized Structure
- Dual-Polarized Structure
- Single-Polarized Array
- Circularly-Polarized Antenna
- 4. Conclusion and Perspectives

Single-Polarized Array Structure

Single-Polarized Array

İETR

ጳ 20 GHz

 $L_A = 10.8\lambda$

Additional adaptive metal short circuit plate

✤ Matched below – 10 dB

- From 19 to 22 GHz with CC plate
- From 18.5 to 22 GHz with open end

• $D_{max}^V = 27.6 \text{ dB}$ with CC plate • 0.2 > simulation

- 1. Context
- 2. Additive Manufacturing

3. Additive Manufacturing of Leaky-Wave Antennas

- What is a Leaky-Wave Antenna?
- Single-Polarized Structure
- Dual-Polarized Structure
- Single-Polarized Array
- Circularly-Polarized Antenna
- 4. Conclusion and Perspectives

- 1. Context
- 2. Additive Manufacturing
- 3. Additive Manufacturing of Leaky-Wave Antennas
- 4. Conclusion and Perspectives

- SLA and SLM enable to print 3-D complex structures in monolithic pieces, avoiding bulky assemblies and their drawbacks. Measured antenna prototypes confirm the enhanced performances at microwave frequencies thanks to AM.
- The proposed topology allows for polarization versatility with independent control of the two leaky waves.
- To go further: dual-band, compact radiators, low coupling arrays.

Additive Manufacturing of Leaky-Wave Antennas

Aurélie Dorlé, Raphaël Gillard, Esteban Menargues, Maarten Van Der Vorst, Emile De Rijk, Petronilo Martín-Iglesias and María García-Vigueras

38 RF Payloads and Technology - Final Presentation Days 2020 – 22/01/2020