

Progress in the Understanding and Modelling of Destructive Re-entry

Dr. James Beck Belstead Research, Clean Space Industrial Days, 20th-24th September 2021 PR00077/D06

Destructive Re-entry Processes

- Initial entry
- Fragmentation
- Aerothermal heating
- Material response
- Uncertainty

The Old World

- Old DRAMA/ORSAT Worldview
 - Key dataset is from VAST/VASP tests
 - 'Catastrophic' fragmentation at 78km
 - Box-level equipment released cold at this altitude
 - Single simulation; no account for marginal cases
- Old SCARAB Worldview
 - Fragmentation predicted at melt temperature
 - Complete fragment heated as equivalent sphere
 - Unfragmented objects landed
 - Larger fragments, smaller number, less risk
- DRAMA/ORSAT view seen as conservative

The Crisis

- Drivers of Change
 - ESA policy: Refusal of waiver for non-compliant spacecraft
 - Advent of Design-for-demise
- Academic Study no Longer Sufficient
 - Highly simplified analyses
 - Complex geometries, but basic physics
- New Interest in Design Detail
 - Reveals significant deficiencies in the tools
 - Much non-conservatism discovered in the modelling
 - Increases understanding of need for testing
- Demonstration of Utility of Ground Testing

The Need

- Materials and Material Response
 - Generally poorly represented
 - Equivalent metal/material requires significant care
- Fragmentation Processes
 - Least well understood part very high uncertainty
 - Drives number/size of fragments \rightarrow Main driver of risk
- Aerothermodynamic Heating
 - Important in fragmentation; drives demise
 - Extremely difficult to get good answer on arbitrary shapes
- Lack of Ground Test Data
- Lack of Flight Data
- Statistical Viewpoint; Likelihoods and Uncertainties

The Response

Test Campaigns

Material testing (metals, composites) Simple fragmentation testing Structural joint testing (+D4D) Equipment testing (Reaction wheels, CubeSat, Panels, MTQ, Electronics, Battery) MLI demise testing

Numerical Analysis

Small parts in subsonic shock region Thermal shock assessment Glass shear assessment Uncertainty modelling (PADRE framework)

O Belstead

Flight Test Feasibility

Modelling Improvements

Component-based representation (SAMj, now DRAMA) Standards and guidelines (DIVE, standard models) Local length scale aerothermodynamics Metal material modelling (emissivity, Cp, catalycity) Insulator modelling (HBI, SBI) Fragmentation/Joints modelling (inserts, mass loss)

And this is limited to BRL involvement...

The Impact

- Shift in Study Types
 - Large Studies
 - PADRE probabilistic framework
 - Uses thousands of simulations of complete spacecraft
 per configuration analysed
 - Full statistical assessment
 - Comparative Studies
 - SAMj and DRAMA
 - Common input format (excel-based)
 - Direct comparison
 - SAMj Viewer of excel input
 - Simplifies model construction

The Impact

- Shift in Modelling Standards
 - Higher Number of Critical Parts Assessed
 - Include all potentially critical parts
 - Component Based Fragmentation
 - Failure primarily at weak parts joints
 - Impact observed in PADRE study
 - Land a larger number of smaller objects
 - Modelling approach implemented into DIVE guidelines
- Consistency in Modelling Standards
 - Guidelines
 - Move towards database of standard equipment models

Recent SAMj Upgrades

- Fragmentation Phenomenology
 - Mass loss model
 - Based on test aluminium failure
 - Small fraction for other metals
- Heat Balance Integral
 - Simplified model to allow for conduction
 - Consistent fidelity with standard bulk heating model
 - Designed for use with glasses and composites
- Complex Shapes
 - What is the impacting area at the ground?
 - SAMj has a new convex hull model to close gaps/holes

The Future

- Aerothermodynamic Heating to Complex Shapes
 - Still a major research topic
 - What happens to attached small parts (bolts, pipes)?
- Material Behaviour
 - Final demise when is a composite no longer a risk?
 - Variation of behaviour of composites?
 - Glass shear demise process
- Fragmentation Phenomenology
 - Still highly uncertain; more hypothesis than understood process
- Flight Experiment Data
 - Improved knowledge means we might be able to use it well!

