LCA Ground Segment CSID Conference 2021

ESA Contract No. 4000123991/18/NL/GLC/as Ground Segment Life Cycle Assessment – Methodological and Quantitative

21th September 2021

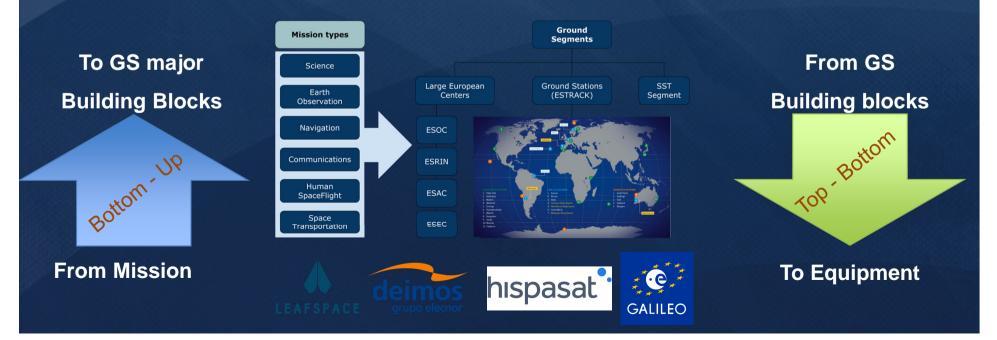
Project Introduction

Main Objective:

- Assess the environmental performances and the applicability of eco-design principles to Ground Segment through the elaboration of a specific methodology, the involvement of ground segment experts and the in depth evaluation of the most promising options
- All the "constituting blocks" of the ground segment will be evaluated: infrastructure, RF equipment, personnel, etc.
- This can be obtained though:
 - Expertise in ground segment
 - Expertise in LCA
 - Expertise in eco-design

Project Introduction

Main Objectives:


- Identify and define various "generic families" of Ground Segment (GS) representatives for Telecommunication (TC), Navigation (NAV), Scientific, Earth Observation (EO), etc. missions, covering their specific infrastructures and operations
- **Perform Life Cycle Assessment** (LCA) of the environmental impact of the various GS families
- Provide data sets and methodological guidelines about LCA methodology applied to GS in order to update/complete the ESA LCA Handbook and Database.
- Investigate innovative eco-design options (technical solutions, spin-ins and/or new technologies, innovative processes, etc.) by also considering non-technical aspects (cost and risks, TRL, implementation roadmap, etc.) which can be applied to the various GS family's infrastructures and operations in order to reduce their environmental impact

Task 1 – Overview of different Ground Segment for different mission types

Task1 approach: sequential analysis following a three steps approach:

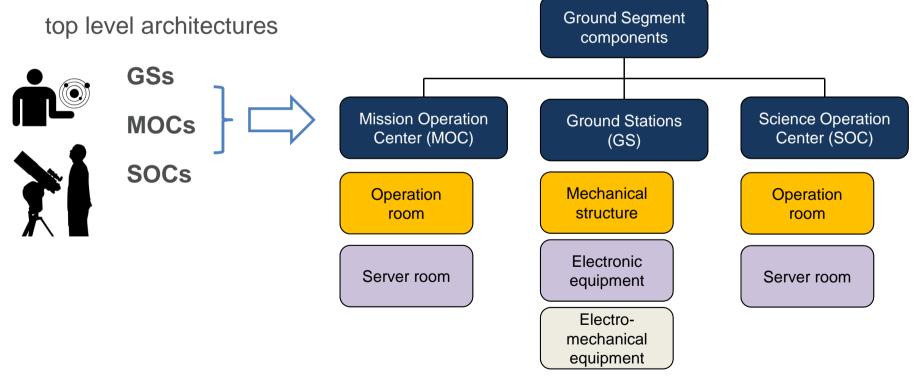
- Subtask 1.1: Identification of different Ground Segments
- Subtask 1.2: Grouping of Ground Segments
- Subtask 1.3: Identification of main elements / subsystems

Main output of Task1 is the consolidation of GS LCA families

Task 1 – Overview of different Ground Segment for different mission types

Task 1.1 – Identification of different ground segments

- Inputs: Survey of more than twenty ESA / non-ESA missions
- Process: Identification of Ground Segment "Major" Building Blocks
- Outputs: Four (4) major components identified


		•	
Mission Family	GS	мос	SOC
Science	Х	X	Х
Navigation	Х	Х	
Earth Observation	Х	Х	Х
Communications	Х	Х	
CubeSat	Х	Х	

MOC: Mission Operations CentreSOC: Science Operations CentreDPC: Data Processing CentreGround Station (GS)

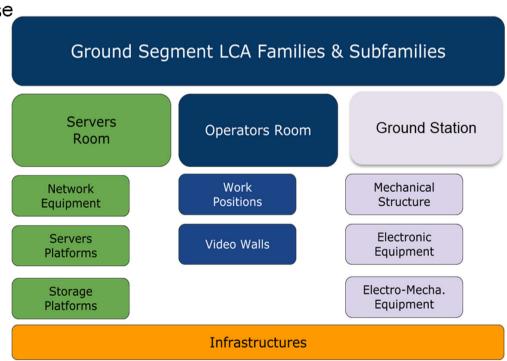
Task 1 – Overview of different GS for different mission types

Task 1.2 – Grouping of ground segments

• Inputs: Major Ground Segment components from previous step as well as its

• **Process:** Identification of commonalities among major GS Components

Task 1 – Overview of different Ground Segment for different mission types


Task 1.2 – Grouping of ground segments

• **Output**: Consolidation of the LCA families and **sub-families**. Four (4) major building blocks and its sub-families consolidated.

Infrastructures (Development phase

Maintenance and Operation):

- Server Room (MOC/SOC)
- Operator Room (MOC/SOC)
- Ground Station

Task 1 – Overview of different Ground Segment for different mission types

Task 1.3 – Identification of main elements and subsystems

• **Inputs**: Eleven (11) study cases covering the complete range of missions types

Missions TYPE	Facility NAME	Location / Country	Facility TYPE	Study Case	PoC
Science	ESTRACK, CEBREROS	Avila, SP	Ground Station, DSA2	Gaia	Lionel Hernandez - CEB Station manager lionel.hernandez@esa.int
	ESAC	Villanueva de la Cañada, SP	Data Processing Center (DPC)		
Navigation	ESTRACK, ESEC	Redu, Belgium	TTC / IOT Ground Station	Galileo	Benoit Demelenne – Chef des Operations benoit.demelenne@esa.int
Earth	ESTRACK, KIRUNA	Kiruna, SW	Ground Station, KIR-1 and KIR-2	Sentinel-1A	Anders Paajarvi - KIR Station manager anders.paajarvi@esa.int
Observation	Deimos DCM	Puertollano, SP	Ground Station Operations Control Center (OCC)	Deimos-2	Antonio Ramírez - PL1 Station manager antonio.ramirez@deimos-space.com
Communications	HISPASAT	Arganda del Rey, SP	Ground Station Operations Control Center (OCC)		Pedro L. Molinero plmolinero@hispasat.es
NanoSat market	LEAF SPACE	Puertollano, SP	(Hosted) Ground Station	New Space	Jonata Puglia jonata.puglia@leaf.space
Many	ESOC	Darmstadt, GE	Operations Control Center (OCC)		Trough LCA Project
SST	DeSS	Puertollano, SP	Space Surveillance Optical Site		Antonio Ramírez - PL1 Station manager antonio.ramirez@deimos-space.com

Task 2 is related to the LCA activities, applied to Ground Segment, used for the management of different space missions

The main activities are:

- LCA of different Ground Segment Families, identified in Task1
- Elaboration of methodological guidelines, in line with Space System LCA guidelines (ESA, 2016)
- Providing of datasets of main elements constituting Ground Segment
- Identification of hotspots

This approach is firstly applied in Task2 and then re-iterated and finalised in Task3

Task 2 & 3 – LCA Report

LCA of different Ground Segment families

Method approach:

The LCA study has been implemented creating and then assessing two main dataset typologies: «Maintenance & Operation» (M&O) and «Ground Systems» due to the specific architectural Ground Segment features.

- Maintenance & Operation: focused on the operational facilities (GSs, MOCs, SOC/DPCs) activities consumptions.
- **Ground systems (equipment)**: focused on the manufacturing processes (development phase) of the different Ground Segment.

M&O impact assessment + Mission required efforts assessment.

LCI of different Ground Segment families: Operation → Ground Stations, Mission Operation Centres, Science Operation Centre, Data Processing Centre

Example: DEIMOS GS Yearly Consumption Data

Table 1.1: Deimos Puertollano Ground Terminal operational consumptions data							
Dataset Name	Deimos Pue	Deimos Puertollano Ground Terminal operation (EO Mission - non ESA mission)					
Description	1 year of G	1 year of Ground Station operation					
Source	Deimos	Deimos					
Relevance	No ESA Sp	ace Mission	s – Earth Observation				
FU	1	Year					
Name	Quantity Units Life Cycle inventory						
Material Inputs							
Electricity consumption	721,3	kWh	Europe: market group for electricity, medium voltage				
Water consumption	N/A	kg	Europe without Switzerland: market for tap water				
Gas/Oil consumption	N/A	MJ	Europe: Heat production, natural gas, at boiler atmospheric non-modulating <100kW				
Diesel consumption	N/A	kg	Europe: diesel production, low-sulfur				
Lubricant	46,47	kg	RER: lubricating oil production				
Paper consumption	N/A	kg	Europe: Paper production, woodfree, uncoated, 50% recycled content, at non-integrated mill				
Waste produced	Waste produced						
Municipal waste	0	kg	Row; market for municipal solid waste ecoinvent				
Hazardous waste	0	kg	Europe without Switzerland: market for hazardous waste, for incineration econyent 3.5				

Table 1.1: Deimos Puertollano Ground Terminal operational consumptions data

LCI of different Ground Segment families: Equipment → following firstly DEIMOS and then ESOC structure

Example: Storage Platform LCI

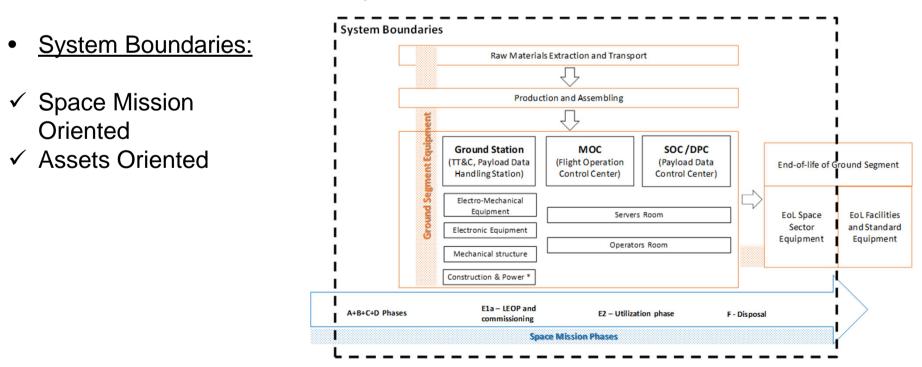

	Table 2.10	u: storage p	nationin mot	del breakdown			
Description		1 kg of Storage platform at the output gate					
Source		Deimos	Deimos				
Relevance		All					
FU	1 kg						
Reference weight		248	kg				
Name	Quantity	Units	Life cycle inventory				
Material inputs							
Casing - Stainless Steel	49%	0,49	kg/FU	ESA Stainless steel product			
Plastic, Polypropylene (PP)	3%	0,03	kg/FU	RER: polypropylene production, granulate ecoinvent 3.5			
Casing - Aluminium	8%	0,08	kg/FU	ESA Stainless steel product			
Electronic unit - Memory type	27%	0,27	kg/FU	Electronic unit, High IC, memory type			
Electronic unit – Low IC	13%	0,13	0,13 kg/FU Electronic unit, low IC				
Manufacturing processes							
Extrusion	1	0,03	kg/FU	Extrusion of plastic sheets and thermoforming, inline, GLO			

Table 2.180: Storage platform model breakdown

• Functional Unit:

Fulfilment of requirements of Ground Segment for the entire mission, along its lifetime.

The fulfilment shall include the operation of Earth Observation / Science / Telecommunication / Navigation / CubeSat mission, along its lifetime and any Ground Segment adaptation required for the specific needs of the mission.

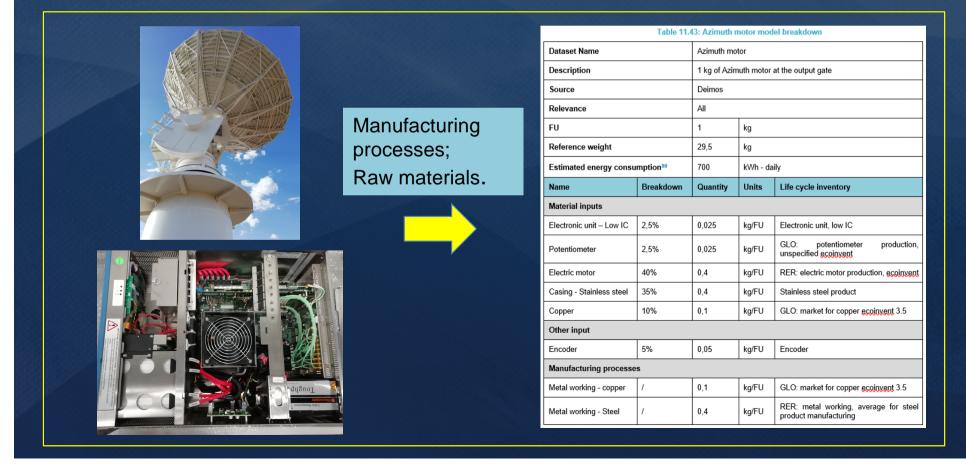
List of the Ground Segment facilities grouped by the mission family

Mission Family	Mission NAME	Mission Operations Centre (MOC)	Science/Data Processing Centre (SOC/DPC)	Ground Station(s)	Note
Earth	Deimos 2 (non-ESA mission)	n-ESA (Puertollano), N/A		 Deimos PL01 (Puertollano), SP Kiruna, SW Svalbard, NW 	Kiruna, Svalbard assumed similar to PL01. (Not Kiruna/Svalbard related to ESTRACK, but managed by SSC)
Observation	Sentinel 3	ESOC (Darmstadt), GE	ESRIN (Fucino), IT	 Kiruna, SW Svalbard,NW; Troll, NW 	Svalbard and Troll are assumed similar to Kiruna.
Navigation*	Galileo	N/A	N/A	N/A	/
Science	GAIA	ESOC (Darmstadt), GE	ESAC (Villafranca), SP	 Cebreros, SP Malargue, AR New Norcia, AU 	Malargue, New Norcia are assumed similar to Cebreros.
CubeSat	Leaf Space	Deimos MOC (Puertollano), SP	N/A	- Deimos PL02 (Puertollano), SP	/
Communications	Hispasat 35W	Hispasat MOC (Arganda del Rey), SP	N/A	- Hispasat (Arganda del Rey), SP	/

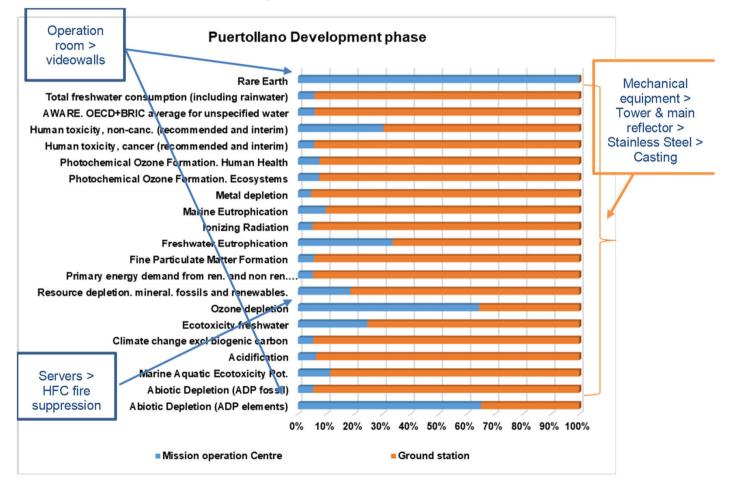
Facilities (GSs, MOCs, SOCs):

- a) LCIA based on the yearly consumption;
- b) LCIA focused on the sources of impacts based on the yearly consumption;
- c) LCIA based on 1 hour (GSs) and 1 man-day (MOCs, SOCs).

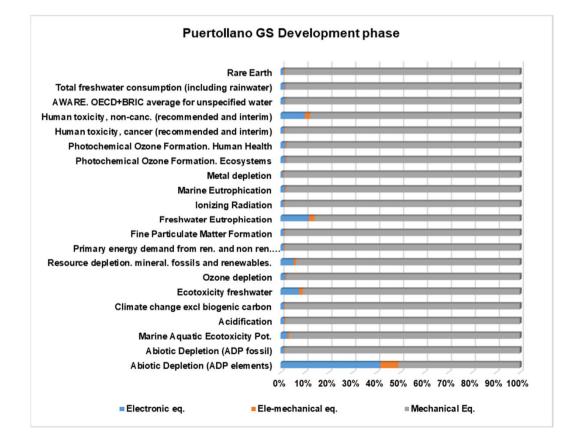
Ground system:

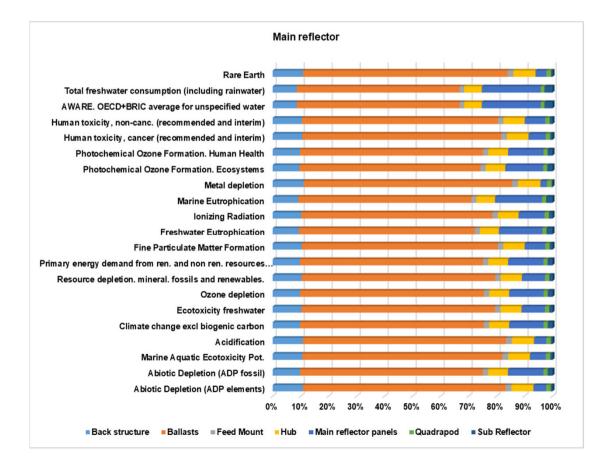

- a) LCIA of the Deimos Puertollano (MOC & GS);
- b) LCIA of Kiruna (Kir-1) 15m GS;
- c) LCIA of Cebreros (CEB) 35m GS;
- d) Ground System Equipment (170 items).

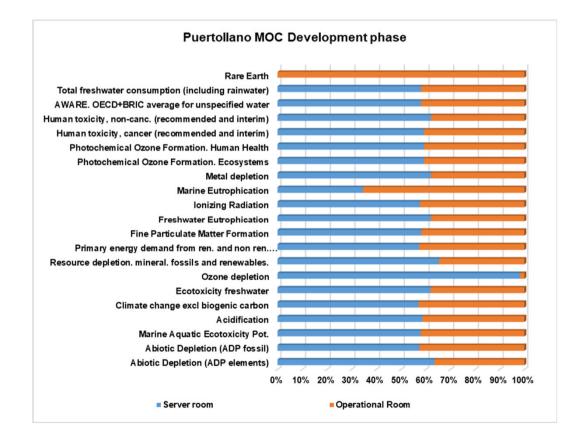
Missions LCIA:

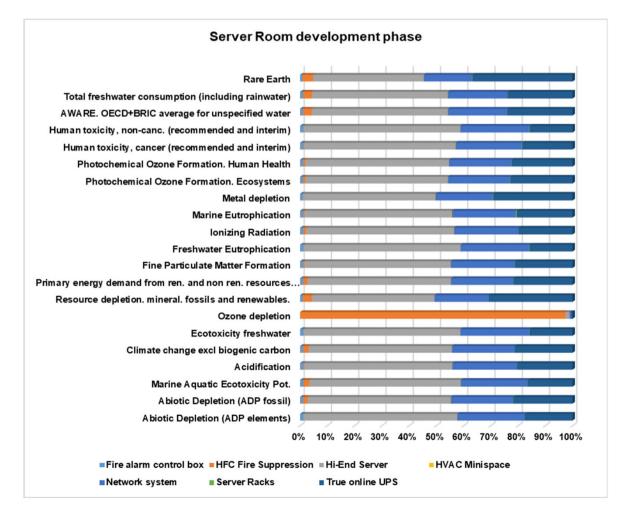

- a) Deimos 2;
- b) LeafSpace;
- c) Hispasat 36W;
- d) Sentinel 3A,
- e) Gaia.

Task 2 & 3 - Life cycle impact assessment – Development phase

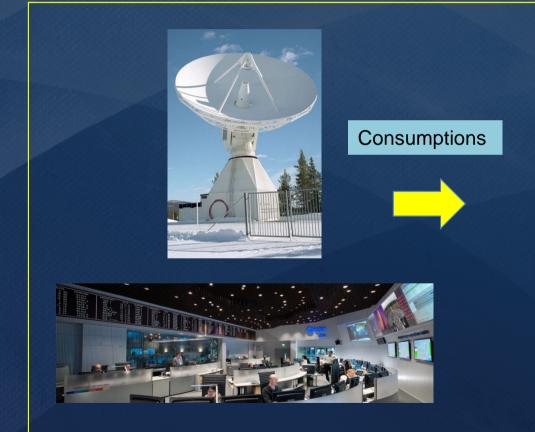

- Ground segment facility sites (development phase): DEIMOS Puertollano, KIR-1 & CEB
- Equipment (development phase)


Deimos Puertollano Ground Segment development phase impact assessment.


Deimos Puertollano Ground Station development phase impact assessment.


Deimos Puertollano Main Reflector (main contributor) development phase impact contributions.

Deimos Puertollano MOC development phase impacts.



Deimos Puertollano Server Room elements development phase impact contributions.

Task 2 & 3 - Life cycle impact assessment – Maintenance and operation (M&O)

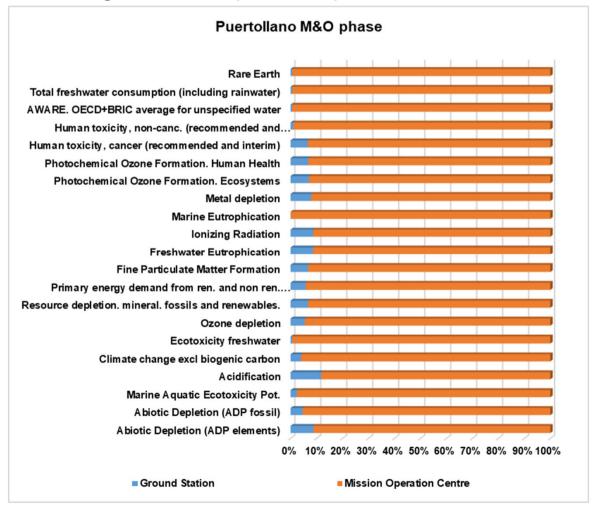
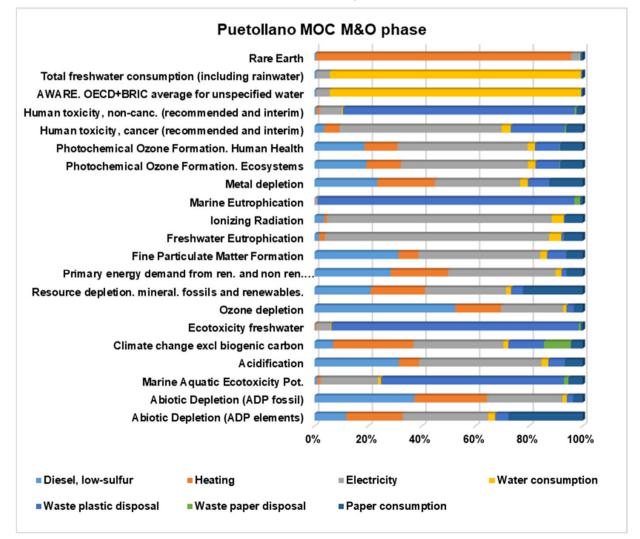

- Ground segment facility sites (Maintenance and operation);

Table 10.8: Deimos Purtollano MOC M&O consumptions data							
Dataset Name	Deimos, Pu	Deimos Puertallano, Mission, Operation, Centre (EO Mission, - non ESA mission)					
Description	1 year of N	lission Oper	ation Centre M&O				
Source	Deimos						
Relevance	No ESA Sp	ace Missior	ns - Earth Observation (Deimos-2)				
FU	1	Year of M	&O of the facility considering its surface				
Facility surface	2796	m²					
Name	Quantity	Quantity Units Life Cycle inventory					
Material inputs							
Electricity consumption	6720	kWh	Europe: market group for electricity, medium voltage				
Water consumption	900000	kg	Europe without Switzerland: tap water production				
Gas/Oil consumption	35060,4	MJ	Europe: Heat production, natural gas, at boiler atmospheric non-modulating <100kW				
Diesel consumption	1018,7	kg	Europe: diesel production, low-sulfur				
Paper consumption	500	kg	RER: paper production econvent 3.5				
Waste produced ¹¹							
Plastic waste	12954	12954 kg GLO: market for waste plastic, mixture, sanitary landfill scoinvent					
Paper waste	500	kg	GLO: treatment of waste graphical paper, unsanitary landfill, dry infiltration class (100mm) ecoinvent 3.5				


Task 3 – LCA of Ground Segment – 2° Iteration

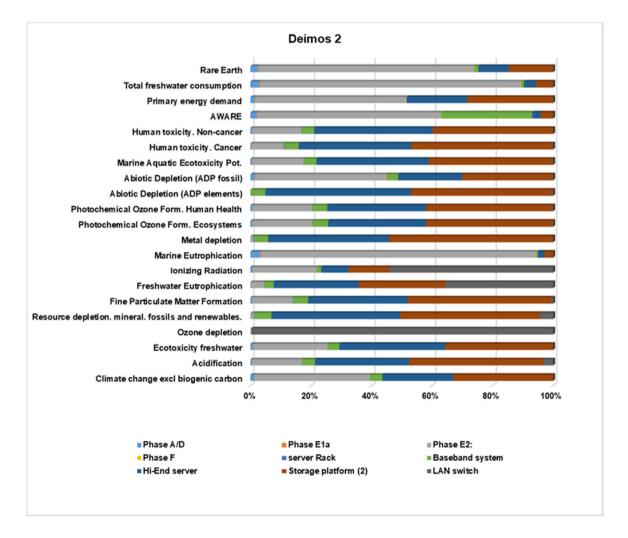
Puertollano Ground Segment M&O phase impact assessment.

Task 3 – LCA of Ground Segment – 2° Iteration

Deimos Puertollano MOC M&O sources of impacts chart.

Task 2 & 3 - Life cycle impact assessment – mission: Deimos2 (Earth Observation)

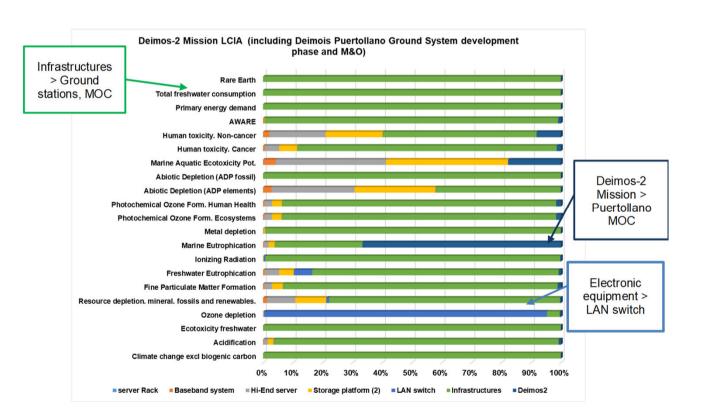
Mission phases

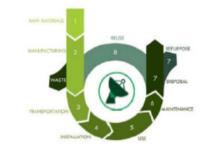

				1	
"Deimos-2"	Phase A/B/C/D	Phase E1a - LEOP + Commissioning	Phase E2: utilization	Phase F (disposal)	
Puertollano Ground Station (PL01) (hours)	0 hours	8.75 hours	3193.75 hours	37.5 hours	
Kiruna Ground Station (hours) - assumed similar to PL01	0 hours	3.5 hours	638.75 hours	7.5 hours	
Svalbard Ground station Station (hours) - assumed similar to PL01	0 hours	3.5 hours	638.75 hours	7.5 hours	
Puertollano MOC (men-day)		70 men-day	10556 men-day	60 men-day	
Imaging processing center Puertollano (men-day) - assumed similar to Puertollano MOC	1000 men-day	35 men-day	18564 men-day	0 men-day	

- Baseband system (mod/demodulator) x1 ;
- Hi-End x1;
- LAN switch x1;
- Server rack x1;
- Storage platform x2.

Mission facility efforts

Mission dedicated equipment.


Deimos 2 EO mission LCIA


Integration between development phase and mission LCIA

Several data are needed: of no. missions managed by each facility and effort dedicated to each mission, the capacity of the facility (which can manage with the same assets more than the missions actually dedicated present), new equipment.

Only for Puertollano facilities this kind of information was available

Methodological Guidelines

ESA - ESTEC Noordwijk, The Netherlands

💽 esa

Ground Segment LCA – Methodological and Quantitative

ESA Contract No. 4000123991/18/NL/GLC/as TN1 – Methodological framework for Ground Segment LCA

Doc. No. P0008945-1-H4 Rev. 3 - January 2020

Fourth Issue

M. De Santis (RINA)

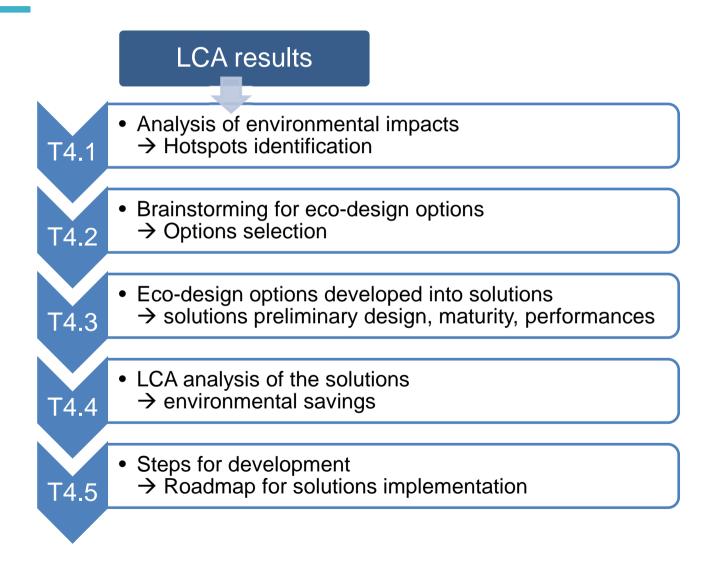
G. Urbano (RINA)

8. Morales (ESA) January 2020

Description

Prepared by

Controlled by


Approved by

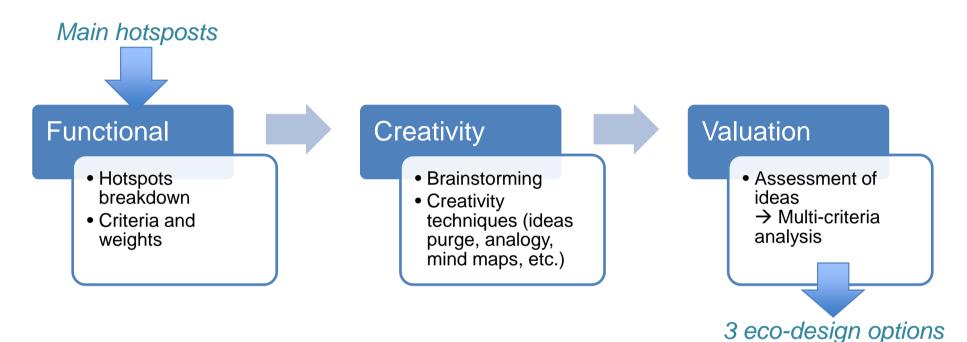
Task 4 - Ecodesign activities

Task 4 – Workflow of activities

Task 4 – LCA results analysis - Conclusion

Comparison facility development vs facility operation

		Climate Change	Metal depletion	Human toxicity, cancer	
Puertollano	M&O phase (impact of 1 year)	9,1x10 ³	6,5	4,7x10 ⁻⁴	
(MOC+GT)	Development Phase (total impact)	3,3 x10 ⁶	1,7 x10 ⁵	8,2 x10 ⁻¹	Mainly governed by stainless steel (+ PWB)
ESOC MOC	M&O phase (impact of 1 year)	6,8 x10 ⁶	4,27 x10 ³	5,36 x10 ⁻¹	Mainly governed by electricity consumption


Very high impact:

- Electricity consumption in O&M phase
- Stainless steel manufacturing in Development phase in GT mechanical equipment

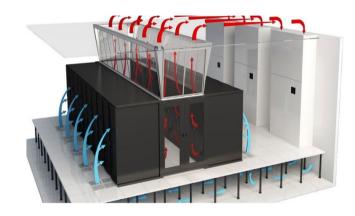
Medium impact:

• Printed Wiring Board in Development phase in MOC/SOC electronic equipment

Task 4 – Eco-design options selection

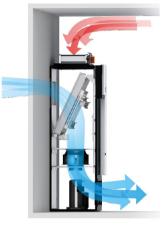
Work performed during work meetings with RINA, DEIMOS, CT and ESA

Task 4 – Eco-design options selection


					_							1
	Environment			Environment	Co	ost	Technology					
Hotspot	Hotspot environmental contribution	а	Eco-design solution	Environmental savings	Development and implementation cost	Recurring cost	Innovation	Maturity	Scalability	Implementation impact	TOTAL	LCA feasibility
	20%			10%	10%	15%	10%	10%	15%	10%		
		S1	Replace video walls & work stations with new, low energy consumption hardware	1,0	5,0	5,0	1,0	5,0	3,0	5,0	3,90	No
		52	Install hot aisle containment and adiabatic or free cooling in server rooms	3,0	4,0	5,0	3,0	5,0	4,0	5,0	4,35	Yes
Electricity consumption in the facilities' daily operation	5,0	53	Implement virtualization for hi end servers and storage platform	3,0	4,0	5,0	1,0	5,0	4,0	4,0	4,05	No
		S4	Implement an energy management system to optimize production, storage and consumption	2,0	3,0	4,0	3,0	5,0	2,0	3,0	3,50	No
		S5	Implement real-time monitoring with connected sensors (IoT)	2,0	5,0	4,0	2,0	5,0	5,0	5,0	4,25	Yes
		S 6	Re-use existing antenna	4,7	4,7	4,3	1,0		4,3	4,0	4,23	Yes
		S 7	Create a catalog of towers of different sizes> discarded								0,00	Yes
		58	Optimize reflector manufacturing to reduce reflector's size and antenna's mass	3,3	3,3	5,	Ľ	4,3	4,7	4,3	4,12	Yes
Stainless steel use in equipment	5,0	S 9	Different design solutions for overall lighter design	4,0	3,0	S	1,0	5,0	5,0	5,0	4,30	Yes
manufacturing		S10	Recycle stainless steel at GT end- of-life	1,7		3,7	1,0	5,0	4,3	5,0	3,83	Yes
		S11	Increase the use of recycled stainless steel	2,0	4,0	3,7	1,3	4,3	4,0	4,7	3,78	Yes
		S12	Use alternative material (reinforced concrete) for the GT tower and ballasts	5,0	5,0	4,0	2,0	2,0	5,0	5,0	4,25	Yes
		S13	Use of aluminum for GT non- structural parts	1,3	4,7	3,7	1,0	3,0	4,0	4,3	3,58	Yes
		S14	State in requirements for the electronic equipment providers	3,0	2,5	3,0	3,0	4,0	4,5	4,5	3,43	No
₽₩Bs		S15	measurements)	1,0	4,0	3,0	1,5	5,0	4,0	2,5	3,05	No
manufacturing for the IC units	3,0	S16	Implement redundancy of critical components	1,5	3,0	2,5	3,0	3,0	3,5	4,5	3,00	No
the IC units		S17	Maintain environmental conditions during operations	1,5	3,0	2,0	2,5	4,5	3,5	3,0	2,88	No
		S18	Use electronics with 3D-printed PWB	1,3	2,0	3,0	3,0	3,0	2,0	4,3	2,72	Yes

Task 4 – Solutions

Hotspot	ID	Eco-design solution	TOTAL
	S1	3,90	
	S 2	Install hot aisle containment and adiabatic or free cooling in server rooms	4,35
Electricity consumption in the facilities'	53	Implement virtualization for hi end servers and storage platform	4,05
daily operation	S4	Implement an energy management system to optimize production, storage and consumption	3,50
	S5	Implement real-time monitoring with connected sensors (IoT)	4,25


	56	Re-use existing antenna	4,23
Stainless steel use in equipment manufacturing	S 7	Create a catalog of towers of different sizes> discarded	0,00
	58	Optimize reflector manufacturing to reduce reflector's size and antenna's mass	4,12
	59	Different design solutions for overall lighter design	4,30
	S10	Recycle stainless steel at GT end- of-life	3,83
	S11	Increase the use of recycled stainless steel	3,78
	S12	Use alternative material (reinforced concrete) for the GT tower and ballasts	4,25
	S13	Use of aluminum for GT non- structural parts	3,58
	S14	State in requirements for the electronic equipment providers	3,43
	S15	Implement preventive maintenance operations (using sensors measurements)	3,05
PWBs manufacturing for the IC units	S16	Implement redundancy of critical components	3,00
	S17	Maintain environmental conditions during operations	2,88
	S18	Use electronics with 3D-printed PWB	2,72

Task 4 – Solution: Install Hot Aisle Containment and adiabatic or free cooling in server rooms

Hot Aisle Containment:

- Requires row layout and ceiling ducts
- Up to 46% cooling energy reduction

Free cooling:

- Requires access to outside
- Up to 90% cooling energy reduction

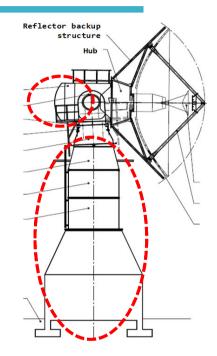
LCA results: 38% savings on climate change impact

Both solutions are commercially available, but prices not communicated.

Timeframe for implementation: few months to a year,

Applicable on existing server rooms.

Task 4 – Solution: Different design solutions for overall lighter design


Reduce the antenna mass, example: PL-01: 10,2m/55tons vs PL-03: 11m/18tons Price also divided by 2

LCA results: ~60% savings on 3 cat.

Network of smaller antennas: 10m/55tons vs 3,7m/2tons Performances different → Follow market trend LCA results: ~11% savings on 3 cat.

Both solutions: technically and commercially feasible Implementation: only applies **to future antennas/networks**, must be driven by market evolution, continuous improvement

Task 4 – Solution: use alternative material for the GT tower and ballasts

Use of concrete

 Stainless steel tower → reinforced concrete: matches structural requirements

~33% savings

 Stainless steel ballast → concrete into a stainless steel shell: mass

~36% savings

High maturity, produced locally, recycled/recyclable

More complex civil work

Implementation: a year, study (small antenna? location?)

Cost: +40k€ for tower like PL-01

Conclusions

Some final recommendations for future deeper LCA application for GS:

- Require further detailed inputs to confirm preliminary conclusions from this activity at ground segment type level, mainly related to Ground system development phase
- Recommendation to assess electrical consumption reduction measures at ground segment level, for data centers by e.g. combining/sharing resources, due to the huge amount of electricity required by them
- Recommendation to increase Research and Technological funding in development of local independent and sustainable electrical production means, like green sources (i.e. photovoltaic, wind) with use of batteries for the management of peaks

Thanks for the attention!

Michele De Santis

michele.desantis@rina.org