

Equipment level demise analysis with SCARAB

P. Kärräng

Equipment level demise analysis with SCARAB 2021 CSID - Clean Space Industry Days, 20th - 24th of September 2021

The casualty risk for any re-entry shall not exceed 10^{-4}

Design for demise can significantly reduce the risk associated with re-entry.

$$E_c = \rho_p A_c$$

Equipment level demise analysis with SCARAB 2021 CSID - Clean Space Industry Days, 20th - 24th of <u>September 2021</u>

The casualty area can be reduced by limiting the number, size and kinetic energy of fragments

Equipment-level analysis allows for iterations which cannot be done on System-level

Traditional Battery model Detailed Battery model T = 98,852 s **Slow-motion Animation** H = 70.613 km V = 7.498 km/s [flight direction to the right; view from zenith to nadir] Temperature [K] (5,034e+02 .181e+02 7.327e+02 8,474e+02 9.620e+02 1.077e+03 1,191e+03 1,306e+03 1,421e+03 1.535e+03 >1,650e+03 © 2021

Designing for risk reduction is possible through several techniques

Apply design for demise technique

DIVE Guidelines Equipment level Verification Tree

Step 1: Release conditions for the equipment from reference trajectories

Initial temperature 300K

Trajectory bundle gives a larger range of initial re-entry conditions

Single trajectory, without uncertainties

Trajectory bundle, without uncertainties

Step 2: Select your tool (e.g. ESA DRAMA / SARA)

Step 3: Create a baseline model

Solar array drive mechanism

High Fidelity Re-Entry Simulations on Critical Spacecraft Platform Equipment, Demisability of Solar Array Drive Mechanism using SCARAB, Final report, ESA Contract No. 4000121149/17/NL/GLC/as

Step 4: Assess initial model re-entry

Note: Remember to apply reasonable uncertainties to the simulations when estimating the demise altitude

Step 5: Identify feasible design for demise options

Step 6: Assess the new model

Lips, T., Kärräng, P. "Probabilistic casualty risk assessment and labelling for the re-entry of spacecraft components", *Proceedings of the 10th IAASS Conference 2019*. S01/3, Page 12.

Step 7: Perform wind tunnel tests and model correlation

Image credit: Demisable SADM - Final Report Public, ESA Contract No. 4000129245/19/NL/AR/ig,

[NOTE: This image is from another project than previous results shown.]

• Detailed equipment model to component-based

Satellite Model Output Satellite Model Parent SADM-MainShaft1 SADM-MainShaft2 SADM-MainShaft3		
	Import Add New Object Remove Object Export	

High Fidelity Re-Entry Simulations on Critical Spacecraft Platform Equipment, Demisability of Solar Array Drive Mechanism using SCARAB, Final report, ESA Contract No. 4000121149/17/NL/GLC/as

Conclusions

Design-for-demise on equipment level ...

- is an iterative process
- require individually tailored solutions
- can significantly reduce the risk and cost of a re-entry

Thank you for listening!

<u>Contact:</u> Patrik Kärräng p.kaerraeng@htg-gmbh.com

Release altitude from a "typical" spacecraft

Fragmentation data from 16 simulations of a generic "typical" spacecraft, extracted from SCARAB.

