GESIR - EFFECTIVE USE OF GERMANIUM RECOVERY OF GERMANIUM FROM GRINDING WASTE WATER

Fraunhofer Center for Silicon Photovoltaics CSP

Peter Dold Peter Henatsch

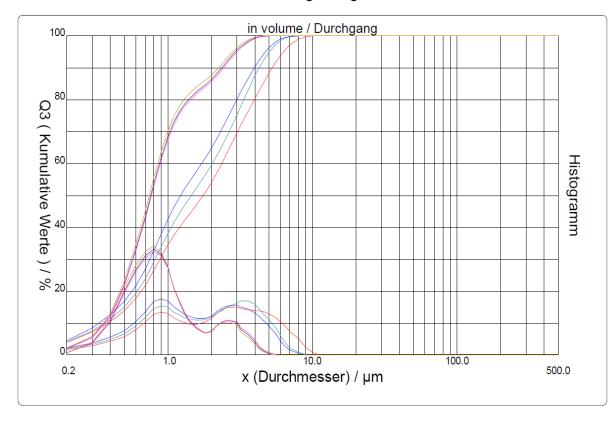
2021 Clean Space Industrial Days 23. September 2021

Content

- Motivation
- Concept GeSiR
- Experimental Results
- Discussion / Recommendations

Motivation

- Germanium is a material with a high criticality, high material costs and a high CO₂ footprint for mining (-> mining by burning-off of coal)
- Germanium is used as substrate material for high-efficiency space solar cells.
- Substrates with a certain thickness are needed for the cell manufacturing process; for operation in space, much lower thickness is sufficient.
- After cell manufacturing: grinding-off of excess germanium results in:
 - less weight and
 - germanium is not lost in space after end-of-life.


=> Concept for recovery of germanium from grinding process-waste water is needed.

Concept Analysis of Grinding Waste Water

Kurvenüberlagerung

- Particle size distribution is in the lower micrometer / sub-micrometer range.
- Germanium is present as solid particles (micrometer, sub-micrometer range)
 together with dissolved GeO₂ in aqueous solution
- Germanium concentration is in the range of 50 - 100 g/m³ (50 to 100 ppm).

Concept Analysis of Grinding Waste Water

Table II: Germanium etch rate for aqueous oxidative chemistries.

	Etch rate
	(nm/min)
H ₂ O with O ₂ bubbling	0.005
H ₂ O with O ₃ bubbling	4
H_2O/H_2O_2 (9/1)	40

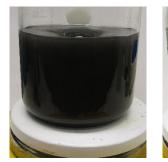
A Study of the Influence of Typical Wet Chemical Treatments on the germanium Wafer Surface

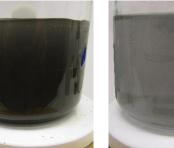
 B. Onsia^{1, 2, a}, T. Conard¹, S. De Gendt^{1, 2}, M. Heyns¹, I. Hoflijk¹, P. Mertens¹, M. Meuris¹, G. Raskin³, S. Sioncke¹, I. Teerlinck¹, A. Theuwis³ J. Van Steenbergen¹ and C. Vinckier²

¹ Imec, kapeldreef 75, B-3001 Heverlee, Belgium

² K.U.Leuven, Afd. Fysische en Anal. Chemie, Celestijnenlaan 200F, B-3001 Heverlee, Belgium ³ Umicore, Watertorenstraat 33, B-2250 Olen, Belgium

> Solid State Phenomena Vols. 103-104 (2005) pp 19-22 Online available since 2005/Apr/01 at www.scientific.net © (2005) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/SSP.103-104.19

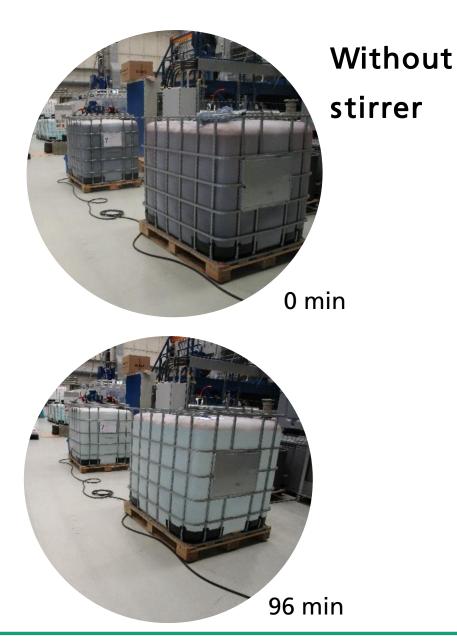

- Maximum solubility of germanium in water:
 - 4 g/l @ RT
 - Around 10 g/l @ T_b
- Dissolution in water:
 - Lack of oxygen: slow
 - Oxidizing agent: fast (up to 1 µm in diameter within 10 minutes)



Concept Analysis of Grinding Waste Water

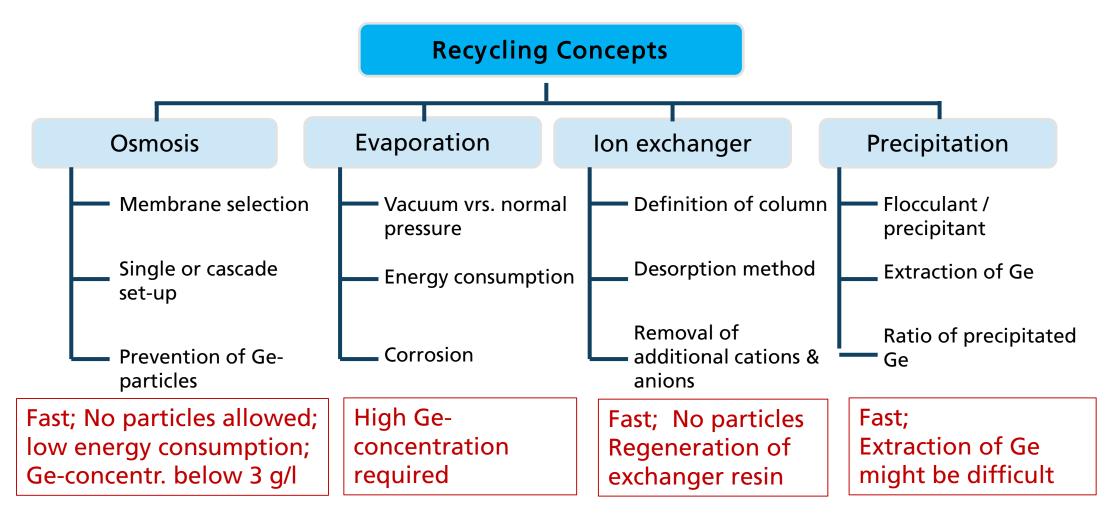
With stirrer

0,5l Ge-grinding water (P1200, 0,13 g/l – 130 ppm) 20 drops of H₂O₂ (50%),


0 min

10 min

5 min



15 min

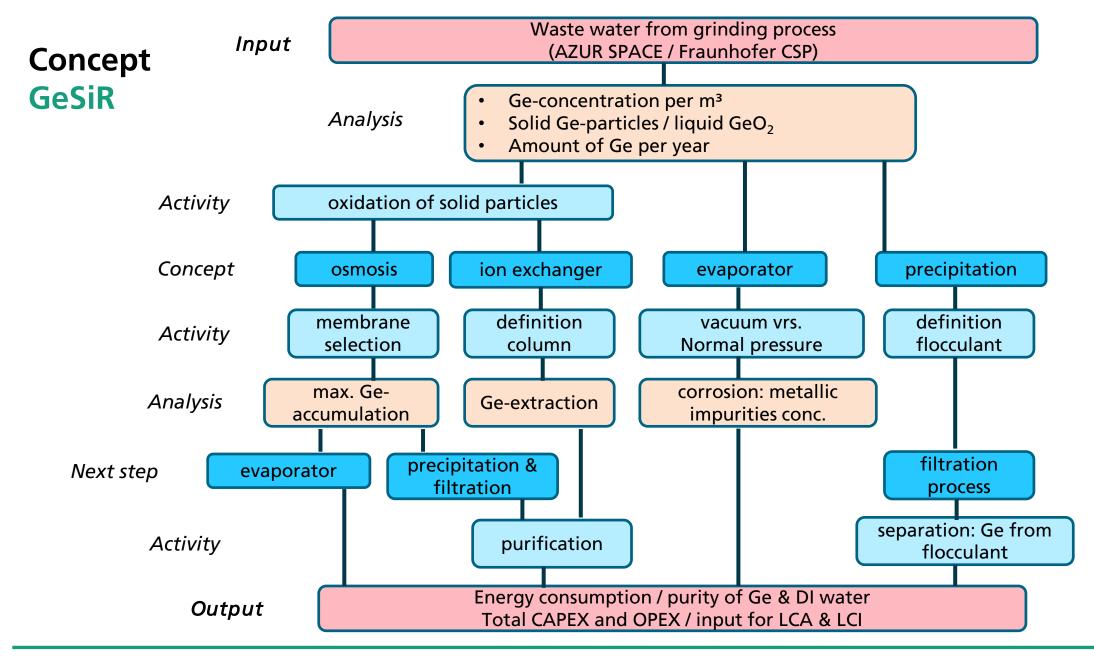
Recovery of Germanium from Process Water Basic Recycling Concepts: Boundary Conditions

Recovery of Germanium from Process Water Basic Recycling Concepts: Boundary Conditions

Grinding water:

Mix of dissolved GeO₂ / very small particles and larger particles

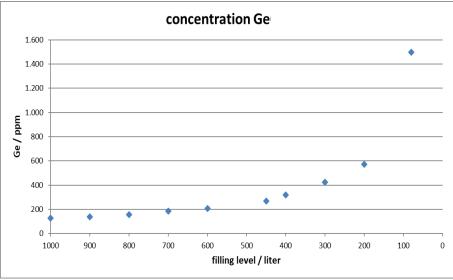
Complete recovery of Ge


-> oxidation with H_2O_2 + recovery of dissolved GeO_2

-> filtration of particles + recovery of dissolved GeO₂

Partial recovery of Ge

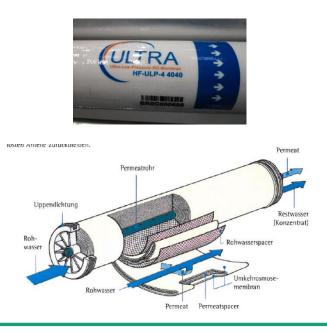
-> filtration of particles

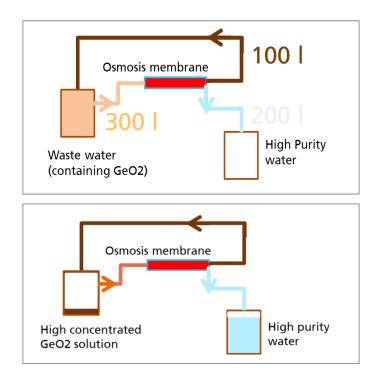


Results I Osmosis and evaporation

- By removing high purity water from the system, GeO₂ is accumulated in the solution/concentrate.
- GeO₂ is accumulated from 0,1 g/l up to a concentration of about 2 g/l, i.e. increase of the Geconcentration by a factor of 10 to 20.
- Vacuum evaporator: GeO₂ sludge
- Heat chamber: solid GeO₂ (high purity)

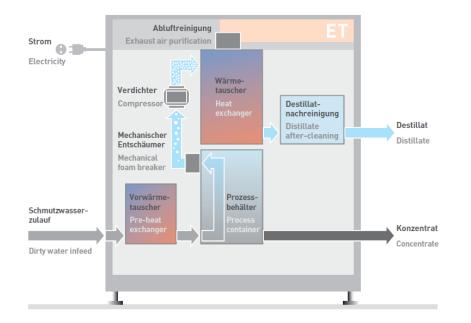
			XRD	Ge-conc. /	GeO ₂ -conc. /
	sample	level [L]	intensity	ppm	ppm
Konzentrat	IBC CSP	1000	3.611	126	182
		900	4.018	139	200
		800	4.584	156	225
		700	5.550	186	268
		600	6.254	208	299
		450	8.173	267	384
		400	9.819	317	457
		300	13.219	422	608
		200	18.130	573	826
		80	48.125	1.497	2156





Recycling Concept Osmosis

- A membrane was connected to a water pump, flow meters and a 5 µm filter.
- The concentration in the concentrate increases by a factor of 2-3 with each cycle.


In our case, 200 l/h high purity water / 100 l/h concentrate is obtained, i.e. about 4.5 h is needed for one IBC.

Recycling Concept

Evaporation (boiling – condensating / normal pressure)

- Industrial size evaporator: capable of up to 1500 l/h; tested @ the company site
- Capex is rather high:
 - ET 1000 (1m³/h): 200 250 k€
 - ET-100 (100 l/h): 70 k€

Тур	Nennleistung I/h Rated capacity I/h	Energiebedarf kWh/m³ Energy demand kWh/m³	Maße L x B x H mm Dimensions L x W x H mm
ET 50	50	75	1800 x 1100 x 2350
ET 75	75	68	1800 x 1100 x 2350
ET 100	100	60	2450 x 1400 x 2600
ET 150	150	60	2450 x 1400 x 2600
ET 250	250	55	2900 x 1550 x 2600
ET 350	350	40	2900 x 1550 x 2600
ET 500	500	40	4400 x 1950 x 3100
ET 750	750	40	4400 x 1950 x 3100
ET 1000	1000	37	4400 x 2400 x 3100
ET 1500	1500	35	4400 x 2400 x 3100

Recycling Concept

Evaporation (Vacuum Evaporator): Fraunhofer CSP

- Lab/pilot-scale evaporator: 170 l/d
- Energy consumption: 3 kW/h
- Output: GeO₂ sludge

Parameter	Einheit	R 150V31
Elektrische Versorgung	-	230 [V] 50 [Hz] 1F
Max. Destillaterzeugung (Wasser)	[l/24h]	170 ± 10%
Leistungsaufnahme bei Dauerbetrieb	[kW]	2,6 ± 10%
Spezifischer elektrischer Energiebedarf pro Liter Destillat	[Wh/l]	380 ± 10%

Results II Filtration

- Using a chamber filter, the coarse particles are removed by forming a filter cake.
- The filtered solution is still turbid (easily cleared up by H_2O_2).
- Solution used for osmosis / ion-exchanger
 - Osmosis: limited advantage, same amount of liquid has to be handled
 - Ion-exchanger: longer operating time of the exchanger resin.

Left: lab scale chamber filter; middle: input solution (100 ppm), right: filtered solution (45 ppm). Total volume: 100 liter.

Results III Ion Exchanger (mixed bed)

- Test with an IBC of 1,000 liter with a GeO₂ concentration of 110 ppm, Flow rate: 300 l/h.
- Solid particles had been oxidized prior to the ion-exchanger using H₂O₂.
- Several ion-exchanger are now available at the CSP, the resin can be exchanged easily.
- Ge-concentration outlet: below detection limit (LOD=20ppm).
- A 20 I exchanger (which is still a rather small one) could extract 1 kg of germanium / could handle 10.000 liter of grinding water.

Ge-concentration in DI-H2O after passing the ion exchanger

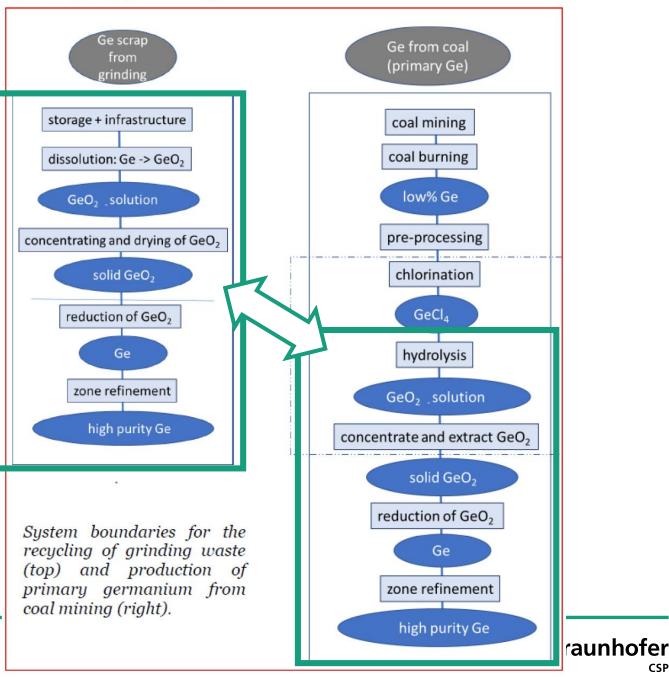


Figure 1: Schematic process description

GeSiR LCA

The data from Fraunhofer CSP will set in comparision to the work of *B. Robertz et* al.: The primary and secondary production of germanium: a life-cycle assessment of different process alternatives.

Our recycling concept is equivalent to the part following "hydrolysis" in the Ge exploitation of primary germanium.

CSP

Recommendations

100% germanium recovery:

- Option 1: Filtration/Oxidation + Osmosis + evaporation + drying: DI-water + solid GeO2
 - Osmosis: CAPEX and OPEX is low; evaporator: CAPEX and OPEX rather high
- Option 2: Filtration/Oxidation + Ion-exchanger
 - Ion-exchanger: CAPEX and OPEX is low; regeneration requires skills

Limited germanium recovery:

Filtration / Ultrafiltration (loosing dissolved GeO2 and very fine particles)

Summary

Recovery of germanium from grinding waste water is possible using existing technologies.

- For most processes, CAPEX / OPEX / energy consumption is rather low.
- Combining certain extraction technologies (osmosis + evaporator / filtration + ion exchanger), complete extraction of germanium is possible (together with DI-water).
- DI-water can be re-used for the grinding process.
- The results might be transferred to waste stream from other germanium manufacturing processes.

