Environmentally friendly polyurethane (PU) materials for space applications

ESA-ESTEC

TOSEDA s.r.o.
Ariane Group GmbH
Latvian State Institute of Wood Chemistry

Target

- Development of novel eco-friendly polyurethane materials avoiding use of toxic non-isocyanate based PU materials for versatile applicability in aerospace industry:
a/ potting systems (spacecrafts manufacturing),
b/ conformal coating (spacecrafts manufacturing), and
c/ thermal insulation foams (launchers manufacturing).

Requirements

- Elimination of toxic isocyanates used in traditional production of PU materials
- Minimization of health and ecological risks
- Sustainability aspect - use of renewable resources
- No solvent content in the target product.
- EU market availability / ITAR free.
toreda

Previous activity:

- Development of (H)NIPU conformal coating, potting and rigid foam
- ESA program: TRP
- Duration: 2017-2019
- ESA Contract: 4000119685/17/NL/KML
- TRL:

3-4

TOSEDA s.r.o. (CZ)

- SME
- Prime-Contractor
- Design, formulation, preparation and testing of HNIPU materials

CCN1:

Latvian State Institute of Wood Chemistry (LV)

- Non-profit organization
- Sub-Contractor
- Semi scale of HNIPU foams by spraying and testing
- Extension towards applications as conformal coatings and as potting material
- Duration: 2020-2022
- TRL: 4-5
„Development of „Green" Polyurethane Materials for Use in Spacecraft and Launcher Applications"

Approach

Non-isocyanate polyurethane synthesis

European Space Agency arianegroup

Synthesis of cyclocarbonates

- Starting raw materials: epoxy compounds based on renewables
- Pressure: 40 bars $\left(\mathrm{CO}_{2}\right.$ inlet)
- Temperature: $110^{\circ} \mathrm{C}$ (inside of the reactor)
- Mixing: mechanic stirrer
- Capacity: 500 mL
- Catalyst: Quaternary ammonium salt
- Reaction time: ca 10-72 h (epoxy groups content $\leq 0.05 \mathrm{~mol} / \mathrm{kg}$)

TOSEDA's laboratory pressure reactor set-up.

European Space Agency \qquad

Synthesis of cyclocarbonates

Cyclocarbonate	Viscosity @ $25^{\circ} \mathrm{C}$ [Pa.s]		Epoxy group content [mol/kg]		Theoretical
	before	after	before	after	conversion $[\%]$
	cyclocarbonation				
CC1	0.14	0.94^{*}	6.07	0.03	99.5
CC2	0.40	2.76	5.17	0.03	99.4

arlanegroup
Previous activity

Application	Reference systems	Supplier
Rigid insulation foam for launchers tanks	CRE210VS	LSIWC, LV
Conformal coating	Solithane S113 + Solithane C113-300	Crompton, US
Potting system	Solithane S113 + TIPA	Crompton, US

Application	Non-isocyanate system	Bio-sourced mass content [wt. \%]	Hydroxy urethane bond mass per total bond mass [\%]
Rigid insulation foam	HNIPU	48.2	37.6
Conformal coating	HNIPU	51.3	42.8
Potting system	NIPU	56.7	100.0

European Space Agency

HNIPU rigid thermoinsulation foams

Laboratory testing

PU CRS 127 reference	HNIPU F 1	HNIPU F 2	HNIPU F 3

Density $\left[\mathrm{g} / \mathrm{cm}^{3}\right.$]	-	0.05	0.08	0.11	0.14
Compression strength at 10% deformation [MPa]	$>0.45^{*}$	0.16	0.09	0.35	0.48
Thermal conductivity [W/m.K]	$<0.035^{*}$	0.033	0.039	0.038	0.042

*Benchmark targets

European Space Agency

HNIPU rigid thermoinsulation foams

- Best candidate HNIPU foam
- Non-isocyanates urethane bonds $=37,6 \%$
- Renewables $=48,2$ \%
- Density $0.075 \mathrm{~g} / \mathrm{cm}^{3}$
- CF free blowing agent

- Mixing ratio $A / B=1 / 1$
- Applicable by spraying

- White color
- Fine cell structure
- No shrinkage
- A $=0.67$ Pa.s $\left(25^{\circ} \mathrm{C}\right)$
- $\mathrm{B}=0.86$ Pa.s $\left(80^{\circ} \mathrm{C}\right)$

Laboratory preparation in paper cup

Scale-up
torede
European Space Agency

HNIPU rigid thermoinsulation foams

Parameter	Requirement	Results	Compliancy
Thermal conductivity	< 0.035 [W/m.K] at RT	$0.039 \mathrm{~W} / \mathrm{m} . \mathrm{K}\left(26,1^{\circ} \mathrm{C}\right)$	Y
Compressive strength load (externally applied insulation)	> 0.45 MPa (ETI); $>1.05 \mathrm{MPa}$ (ITI)	$\begin{gathered} 0.09 \mathrm{MPa}(\mathrm{RT}) \\ 0.37 \mathrm{MPa}\left(-60^{\circ} \mathrm{C}\right) \end{gathered}$	N
Thermal efficiency [defined as 1/ density / thermal conductivity]	as high as possible (0.72 as target)	0.34	N
Closed cell content	as high as possible (90\% as target)	40.6\%	N
Chemical compatibility to $\mathrm{GH}_{2}, \mathrm{GN}_{2}$ and He	Less than 20 \% decrease of properties (compression strength load at 10% deformation)	$0.07 \mathrm{MPa}\left(\mathrm{GH}_{2}\right)$ $0.10 \mathrm{MPa}\left(\mathrm{GN}_{2}\right)$ $0.11 \mathrm{MPa}(\mathrm{He})$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{Y} \\ & \mathrm{Y} \end{aligned}$
Low mass gain and no mech. failure induced by cryopump. effect	Less than 20% decrease of properties	0.09 MPa	Y
REACH and environmental requirements	No solvent content in targeted product	No solvent	Y
	No use of isocyanates in the synthetic route	No isocyanate	Y
	Possibly use of renewable sources	48.2 \%	Y
	No CFC foaming agents are to be used	Yes	Y
Materials procurement	EU market availability / ITAR free	Yes	Y
Urethane related mass	As high as possible	37.6 \%	Y

∞
arıanegroup
European Space Agency
arlanegroup

HNIPU conformal coating

Renewables = 57,8 \%
Non-isocyanates urethane bonds = 100 \%

Renewables = 51,3 \%
Non-isocyanates urethane bonds $=42,9 \%$

碃

NIPU potting system

Parameter	Requirement	Results	Compliancy
Outgassing *	RML < 1.0\%, CVCM < 0.1\%	0.53 \% RML	Y
Glass transition temperature **	$\leq 50^{\circ} \mathrm{C}$	$47^{\circ} \mathrm{C}$	Y
Surface hardness **	≥ 70 Shore D	84 Shore D	Y
Surface resistivity **	$\geq 6.1 \times 10^{10} \Omega$	$1.7 \times 10^{13} \Omega$	Y
Volume resistivity **	$\geq 3.2 \times 10^{12} \Omega . \mathrm{m}$	$1.8 \times 10^{13} \Omega . \mathrm{m}$	Y
Tensile strength at RT ${ }^{* *}$	$\geq 35 \mathrm{MPa}$	35 MPa	Y
Tensile strength at $-60^{\circ} \mathrm{C}{ }^{* *}$	$\geq 70 \mathrm{MPa}$	26 MPa	N
Elongation at break at $\mathrm{RT}^{* *}$	$\geq 15 \%$	5.1 \%	N
Elongation at break at $-60^{\circ} \mathrm{C}$ **	$\geq 5 \%$	1.2 \%	N
REACH and environmental requirements *	No solvent content in targeted product	No solvent	Y
	No use of isocyanates in the synthetic route	No isocyanate	Y
	Possibly use of renewable sources	57.6 \%	Y
Materials procurement *	EU market availability / ITAR free	Yes	Y
Thermal conductivity ($26{ }^{\circ} \mathrm{C}$) ${ }^{* *}$	≥ 0.164 W/m. ${ }^{\text {K }}$	0.290 W/m.K	Y
Urethane related mass	As high as possible	100.0\%	Y

Note: * Benchmark target according to the SoW.
** Values derived from the reference polyurethane system based on reaction of Solithane S113 and TIPA (a product of Crompton, US)

European Space Agency

HNIPU conformal coating system

Parameter	Requirement	Results	Compliancy
Outgassing *	RML < 1.0\%, CVCM < 0.1\%	0.81 \% RML	Y
Glass transition temperature **	$\leq 1^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	Y
Surface hardness **	≥ 70 Shore A	75 Shore A	Y
Surface resistivity **	$\geq 1.5 \times 10^{9} \Omega$	$1.55 \times 10^{11} \Omega$	Y
Volume resistivity **	$\geq 5.7 \times 10^{11} \Omega$.m	$3.8 \times 10^{8} \Omega$.m	N
Tensile strength at $\mathrm{RT}^{* *}$	$\geq 2.5 \mathrm{MPa}$	$2,1 \mathrm{MPa}$	N
Tensile strength at $-60^{\circ} \mathrm{C}^{* *}$	$\geq 45 \mathrm{MPa}$	53.2 MPa	Y
Elongation at break at RT**	≥ 90 \%	92 \%	Y
Elongation at break at $-60^{\circ} \mathrm{C} * *$	≥ 20 \%	3.3 \%	N
REACH and environmental requirements *	No solvent content in targeted product	No solvent	Y
	No use of isocyanates in the synthetic route	No isocyanate	Y
	Possibly use of renewable sources	51.3 \%	Y
Materials procurement *	EU market availability / ITAR free	Yes	Y
Thermal conductivity $\left(26{ }^{\circ} \mathrm{C}\right)^{* *}$	$\geq 0.251 \mathrm{~W} / \mathrm{m}$. K	0.292 W/m.K	Y
Urethane related mass	As high as possible	42.9 \%	Y

Note: * Benchmark target according to the SoW.
** Values derived from the reference polyurethane system based on reaction of Solithane S113 and Solithane C113-300 (a product of Crompton, US)
toreda
technology -science. developnent

Application	Dimensions of delivered HW	Appearance of the HW	
Rigid insulation foam	$3 \times 3 \times 12 \mathrm{~cm}$ blocks (2 pcs)		
Conformal coating	250 ml of the uncured materials Recommended curing: $3 \mathrm{~h} @ 50^{\circ} \mathrm{C}+11 \mathrm{~h} @ 70^{\circ} \mathrm{C}+3 \mathrm{~h} @ 110^{\circ} \mathrm{C}$ $25 \times 15 \mathrm{~cm}$ cured plates, thickness 2 mm (2 pcs)		
Potting system	250 ml of the uncured materials Recommended curing: $3 \mathrm{~h} @ 50^{\circ} \mathrm{C}+11 \mathrm{~h} @ 70^{\circ} \mathrm{C}+3 \mathrm{~h} @ 110^{\circ} \mathrm{C}$ $25 \times 15 \mathrm{~cm}$ cured plates, thickness 2 mm (2 pcs)		

Conclusions - previous study

- Hybrid non-isocyanates polyurethanes as new environmentally friendlier alternative to traditional PU materials
> Up to 100% replacement of toxic isocyanate hardeners
> Up to ca 60% renewable raw materials

SYSTEM	Hydroxy urethane bond mass per total bond mass [wt. \%]	Content of renewables based components [wt. \%]
NIPU potting	100	58
HNIPU conformal coating	43	51
HNIPU foams	38	48

- The pre-developer HNIPU rigid foam has high potential to be implemented as external thermal insulation on existing and future Launch Vehicles by spraying without use of hazardous blowing agents
- The pre-developed (H)NIPU resins are suitable candidates for application in space vehicles electronics such as potting and conformal coating materials
- Next steps: to increase maturity to TRL 5
arıanegroup

CCN1

Studied systems:

- Conformally coated printed circuit boards
- 2 component system
- 1 component system - UV curable (back-up system)
- Pressure sensors encapsulated by potting system

Target:

- Adjustment of key parameters - rheology, curing conditions, Tg, tensile properties, thermal conductivity, and electrical resistance according to the selected target applications.
- TRL: 4-5

The optimization:

- Verification of reproducibility of cyclocarbonates synthesis
- Optimization of formulations of the predeveloped (H)HNIPU systems
torede

Synthesis of cyclocarbonates - optimization

- Synthesis
> Newly 4 types of cyclocarbonates (3 derivatives of renewables)
- Catalysts concentration
> The most optimal TBABr catalyst concentration is $0.5-1.0 \mathrm{wt}$. \% when the constant conversion $\geq 99 \%$ is reached after ca 6 h .
> Chemical structure confirmed by NMR.
- Catalysts regeneration
> Possible by extraction, however with limited purity and yield.
> Recycling extra technological step requiring solvents waste management - economically/ecologically ineffective.
- Synthesis reproducibility - scale up
> Semi scale lab pressure reactor - 300 g of cyclocarbonate per batch with conversion over 99%.
> However, increase batch volume from 100 to 300 g reflected in $3 x$ increase of the synthesis time.

ESA Contract No. 4000119685/17/NL/KML

"Development of „Green" Polyurethane Materials for Use in Spacecraft and Launcher Applications"

European Space Agency

Conformal coatings - updated requirements

- Outgassing (required as per ECSS-Q-ST-70-02C: RML $<1.0 \%$, CVCM $<0.1 \%$).
- Viscosity ≤ 8 Pa.s. at RT.
- Working time: 60-90 min (Pot life min 1 h).
- Curing time ≤ 7 days @ RT (preferably $\leq 24 \mathrm{~h} @ 60^{\circ} \mathrm{C}$) for two components system and preferably less than 1 hour @ RT for one component system.
- Operation temperature preferably $-60^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$.
- Glass transition temperature $\leq 1^{\circ} \mathrm{C}$.
- Surface hardness ≥ 70 Shore A.
- Volume resistivity $\geq 5,7 \times 10^{11} \Omega$.m.
- Tensile strength $\geq 2,5 \mathrm{MPa}$ at RT and $\geq 45 \mathrm{MPa}$ at $-60^{\circ} \mathrm{C}$.
- Elongation at break $\geq 90 \%$ at RT and $\geq 20 \%$ at $-60^{\circ} \mathrm{C}$.
- Resistance to common cleaning agents, such as isopropyl alcohol.
- Film quality inspection: Coating thickness and Uniformity of coating on selected surfaces.
- Ease of repair (e.g. by mechanical stripping).
- Linear thermal expansion coefficient (CTE) $<2 \times 10^{-4} 1 /{ }^{\circ} \mathrm{C}$.
- Thermal conductivity $\geq 0.35 \mathrm{~W} / \mathrm{m}$.K.
- Thermal cycling (10 cycles between LN 2 and $+120^{\circ} \mathrm{C}$ at atm. pressure).
- Pull of strength before $\mathrm{TC} \geq 3 \mathrm{MPa}$ (Al substrate) and after TC $\geq 2.65 \mathrm{MPa}$ (Al substrate).
- High temperature moisture absorption $\leq 3 \%$.
- Resistance to common cleaning agent such as isopropylalcohol.

ESA Contract No. 4000119685/17/NL/KML

„Development of „Green" Polyurethane Materials for Use in Spacecraft and Launcher Applications"

European Space Agency

Potting system - updated requirements

- Outgassing (required as per ECSS-Q-ST-70-02C: RML < 1.0\%, CVCM < 0.1\%).
- Viscosity ≤ 10 Pa.s.
- Working time at RT: 1-3 h (Pot life min 1 h).
- Curing time ≤ 7 days @ $25^{\circ} \mathrm{C}$ (preferably $\leq 24 \mathrm{~h} @ 60^{\circ} \mathrm{C}$.
- Operational temperature $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (preferably $-60^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$).
- Glass transition temperature $\leq 50^{\circ} \mathrm{C}$.
- Surface hardness ≥ 70 Shore D.
- Volume resistivity ≥ 1 G Ω.m.
- Temperature range min from - $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$, preferably from $-40^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$.
- Tensile strength $\geq 5 \mathrm{MPa} @ 80^{\circ} \mathrm{C}$.
- Tensile strength $\geq 7 \mathrm{MPa}$ @ RT.
- Elongation at break $\geq 8 \%$ @ RT.
- Elongation at break $\geq 3 \% @-20^{\circ} \mathrm{C}$.
- Linear thermal expansion coefficient (CTE) $<2 \times 10^{-4} 1 /{ }^{\circ} \mathrm{C}$.
- Thermal conductivity $\geq 0.35 \mathrm{~W} /(\mathrm{K} . \mathrm{m})$.
- Thermal cycling (10 cycles between LN2 and $+120^{\circ} \mathrm{C}$ at atm. pressure).
- Pull of strength before thermal cycling $\geq 3 \mathrm{MPa}$ (Al substrate) and after thermal cycling $\geq 2.65 \mathrm{MPa}$ (AI substrate).
- High temperature moisture absorption $\leq 3 \%$.

European Space Agency

Conformal coatings - optimization

- Optimization of the formulation composition
- Modification by selected nanoadditives
- Viscosity reduction by reactive solvents

Sample ID	Tg $\left[{ }^{\circ} \mathrm{C}\right]$	Surface hardness [Shore A]	Thermal conductivity [W/m.K]	Volume resistivity $[\Omega . \mathrm{m}]$	Tensile strength at RT $[\mathrm{MPa}]$	Elongation at break at RT $[\%]$	Hydroxy urethane bond mass per total bond mass [\%]	Content of renewable based components [wt. \%]
Requirements	≤ 1	≥ 70	≥ 0.35	$\geq 5.7 \mathrm{e} 11$	2.5	90	-	-
19E-83-MIX-1	4.2	74	0.33	$4.2 \mathrm{e7}$	1.2	71	42,8	51,3
19E-101	1.1	83	0.62	5.3 e 6	2.3	93	42,9	49,3
$19 \mathrm{E}-100$	-1.8	80	0.45	3.7 e 7	4.8	122	44,9	30,5

Conclusions - CCN1

- Optimization of cyclocarbonation
$>$ Synthesis of 4 types of cyclocarbonates (catalyst content optimized to 0,5 wt. \%)
> Scale-up (300 g batch) and reproducibility - successful
$>$ Recycling of catalyst - economically and ecologically ineffective
- Optimization of formulations of the predeveloped NIPU conformal coating and potting materials according to the selected target industrial application (TRL 4).
> In progress
- Validation of industrial applicability - testing of breadboard demonstrator (pressure sensor) in a collaboration of the industrial partner (TRL 5).
> Next steps

