

Environmentally friendly polyurethane (PU) materials for space applications

ESA-ESTEC

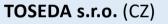
TOSEDA s.r.o. Ariane Group GmbH Latvian State Institute of Wood Chemistry

Target

- Development of novel eco-friendly polyurethane materials avoiding use of toxic non-isocyanate based PU materials for versatile applicability in aerospace industry:
 - a/ potting systems (spacecrafts manufacturing),
 - b/ conformal coating (spacecrafts manufacturing), and
 - c/ thermal insulation foams (launchers manufacturing).

Requirements

- Elimination of toxic isocyanates used in traditional production of PU materials
- Minimization of health and ecological risks
- Sustainability aspect use of renewable resources
- No solvent content in the target product.
- EU market availability / ITAR free.



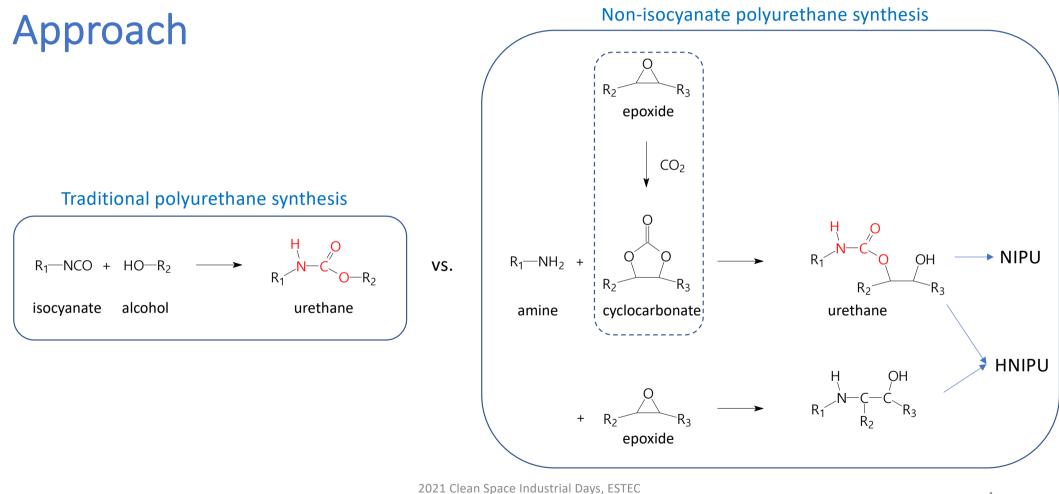
Previous activity:

- Development of (H)NIPU conformal coating, potting and rigid foam
- ESA program: TRP
- Duration: 2017-2019
- ESA Contract: 4000119685/17/NL/KML
- TRL: 3-4



- SME
- Prime-Contractor
- Design, formulation, preparation and testing of HNIPU materials

<u>CCN1</u>:


- Extension towards applications as conformal coatings and as potting material
- Duration: 2020-2022
- TRL: 4-5

• Definition of industrial requirements and evaluation of HNIPU materials

^{20-24/09/2021}

Synthesis of cyclocarbonates

300 g batch

TOSEDA's laboratory pressure reactor set-up.

Starting raw materials: epoxy compounds based on renewables
Pressure: 40 bars (CO₂ inlet)

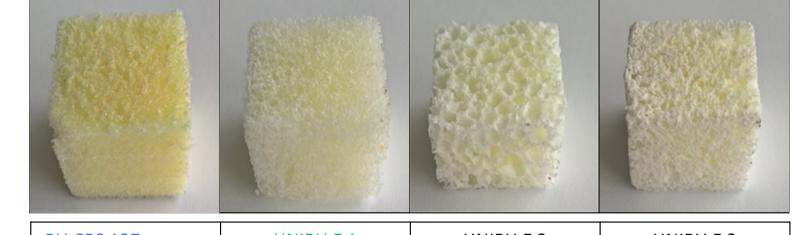
- Temperature: 110 °C (inside of the reactor)
- Mixing: mechanic stirrer
- Capacity: 500 mL
- Catalyst: Quaternary ammonium salt
- Reaction time: ca 10 72 h (epoxy groups content ≤ 0.05 mol/kg)

Synthesis of cyclocarbonates

	Viscosity @ 25 °C [Pa.s]		Epoxy group cor	Theoretical	
Cyclocarbonate	before	after	before	after	conversion
		[%]			
CC1	0.14	0.94*	6.07	0.03	99.5
CC2	0.40	2.76	5.17	0.03	99.4

Previous activity

Application	Reference systems	Supplier
Rigid insulation foam for launchers tanks	CRE210VS	LSIWC, LV
Conformal coating	Solithane S113 + Solithane C113-300	Crompton, US
Potting system	Solithane S113 + TIPA	Crompton, US


Application	Non-isocyanate system	Bio-sourced mass content [wt. %]	Hydroxy urethane bond mass per total bond mass [%]	
Rigid insulation foam	HNIPU	48.2	37.6	
Conformal coating	HNIPU	51.3	42.8	
Potting system	NIPU	56.7	100.0	

HNIPU rigid thermoinsulation foams

Laboratory testing

		PU CRS 127 reference	HNIPU F 1	HNIPU F 2	HNIPU F 3
Density [g/cm ³]	-	0.05	0.08	0.11	0.14
Compression strength at 10% deformation [MPa]	> 0.45*	0.16	0.09	0.35	0.48
Thermal conductivity [W/m.K]	< 0.035*	0.033	0.039	0.038	0.042

*Benchmark targets

HNIPU rigid thermoinsulation foams

Laboratory preparation in paper cup

• Best candidate HNIPU foam

- Non-isocyanates urethane bonds = 37,6 %
- Renewables = 48,2 %
- Density 0.075 g/cm³
- CF free blowing agent
- Mixing ratio A/B = 1/1
- Applicable by spraying
- White color
- Fine cell structure
- No shrinkage
- A = 0.67 Pa.s (25 °C)
- B = 0.86 Pa.s (80 °C)

esa

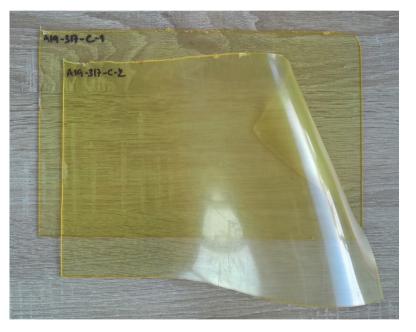
European Space Agency

arianegroup

Scale-up

HNIPU rigid thermoinsulation foams

Parameter	Requirement	Results	Compliancy
Thermal conductivity	< 0.035 [W/m.K] at RT	0.039 W/m.K (26,1°C)	Y
Compressive strength load (externally applied insulation)	> 0.45 MPa (ETI); > 1.05 MPa (ITI)	0.09 MPa (RT)	N
	2 0:45 MPa (ETT), 21:05 MPa (TT)	0.37 MPa (-60°C)	
Thermal efficiency [defined as 1 / density / thermal conductivity]	as high as possible (0.72 as target)	0.34	N
Closed cell content	as high as possible (90 % as target)	40.6 %	N
	Less than 20 % decrease of properties (compression	0.07 MPa (GH ₂)	N
Chemical compatibility to GH ₂ , GN ₂ and He	strength load at 10 % deformation)	0.10 MPa (GN ₂)	Y
	strength load at 10 % delof mation)	0.11 MPa (He)	Y
Low mass gain and no mech. failure induced by cryopump. effect	Less than 20 % decrease of properties	0.09 MPa	Y
	No solvent content in targeted product	No solvent	Y
REACH and environmental requirements	No use of isocyanates in the synthetic route	No isocyanate	Y
	Possibly use of renewable sources	48.2 %	Y
	No CFC foaming agents are to be used	Yes	Y
Materials procurement	EU market availability / ITAR free	Yes	Y
Urethane related mass	As high as possible	37.6 %	Y



NIPU potting system

Renewables = 57,8 % Non-isocyanates urethane bonds = 100 %

HNIPU conformal coating

Renewables = 51,3 % Non-isocyanates urethane bonds = 42,9 %

NIPU potting system

Parameter	Requirement	Results	Compliancy
Outgassing *	RML < 1.0%, CVCM < 0.1%	0.53 % RML	Y
Glass transition temperature **	≤ 50 °C	47 °C	Y
Surface hardness **	≥ 70 Shore D	84 Shore D	Y
Surface resistivity **	$\geq 6.1 \times 10^{10} \Omega$	1.7 x10 ¹³ Ω	Y
Volume resistivity **	$\geq 3.2 \times 10^{12} \Omega.m$	1.8 x10 ¹³ Ω.m	Y
Tensile strength at RT **	≥ 35 MPa	35 MPa	Y
Tensile strength at -60 °C **	≥ 70 MPa	26 MPa	Ν
Elongation at break at RT **	≥ 15 %	5.1 %	Ν
Elongation at break at -60 °C **	≥ 5 %	1.2 %	Ν
	No solvent content in targeted product	No solvent	Y
REACH and environmental requirements *	No use of isocyanates in the synthetic route	No isocyanate	Y
	Possibly use of renewable sources	57.6 %	Y
Materials procurement *	EU market availability / ITAR free	Yes	Y
Thermal conductivity (26 °C) **	≥ 0.164 W/m.K	0.290 W/m.K	Y
Urethane related mass	As high as possible	100.0 %	Y

Note: * Benchmark target according to the SoW.

** Values derived from the reference polyurethane system based on reaction of Solithane S113 and TIPA (a product of Crompton, US)

HNIPU conformal coating system

Parameter	Requirement	Results	Compliancy
Outgassing *	RML < 1.0%, CVCM < 0.1%	0.81 % RML	Y
Glass transition temperature **	≤ 1 °C	0°C	Y
Surface hardness **	≥ 70 Shore A	75 Shore A	Y
Surface resistivity **	$\geq 1.5 \times 10^9 \Omega$	1.55 x 10 ¹¹ Ω	Y
Volume resistivity **	≥ 5.7 x 10 ¹¹ Ω.m	3.8 x 10 ⁸ Ω.m	Ν
Tensile strength at RT **	≥ 2.5 MPa	2,1 MPa	N
Tensile strength at -60 °C **	≥ 45 MPa	53.2 MPa	Y
Elongation at break at RT **	≥ 90 %	92 %	Y
Elongation at break at -60 °C **	≥ 20 %	3.3 %	N
	No solvent content in targeted product	No solvent	Y
REACH and environmental requirements *	No use of isocyanates in the synthetic route	No isocyanate	Y
	Possibly use of renewable sources	51.3 %	Y
Materials procurement *	EU market availability / ITAR free	Yes	Y
Thermal conductivity (26 °C) **	≥ 0.251 W/m.K	0.292 W/m.K	Y
Urethane related mass	As high as possible	42.9 %	Y

Note: * Benchmark target according to the SoW.

** Values derived from the reference polyurethane system based on reaction of Solithane S113 and Solithane C113-300 (a product of Crompton, US)

Application	Dimensions of delivered HW	Appearance of the HW
Rigid insulation foam	3 x 3 x 12 cm blocks (2 pcs)	
	250 ml of the uncured materials	
Conformal coating	Recommended curing: 3h @ 50 °C + 11 h @ 70 °C + 3 h @ 110 °C 25 x 15 cm cured plates, thickness 2 mm (2 pcs)	A19-372 A B B B B B B B B B B B B B B B B B B
Potting system	250 ml of the uncured materials Recommended curing: 3h @ 50 °C + 11 h @ 70 °C + 3 h @ 110 °C	A13-352 H13-352
	25 x 15 cm cured plates, thickness 2 mm (2 pcs)	A19-371 A B

Conclusions - previous study

- Hybrid non-isocyanates polyurethanes as new environmentally friendlier alternative to traditional PU materials
 - > Up to 100 % replacement of toxic isocyanate hardeners
 - > Up to ca 60 % renewable raw materials

SYSTEM	Hydroxy urethane bond mass per total bond mass [wt. %]	Content of renewables based components [wt. %]
NIPU potting	100	58
HNIPU conformal coating	43	51
HNIPU foams	38	48

- The pre-developer HNIPU rigid foam has high potential to be implemented as external thermal insulation on existing and future Launch Vehicles by spraying without use of hazardous blowing agents
- The pre-developed (H)NIPU resins are suitable candidates for application in space vehicles electronics such as potting and conformal coating materials
- Next steps: to increase maturity to TRL 5

Studied systems:

CCN1

- Conformally coated printed circuit boards •
 - 2 component system
 - 1 component system UV curable (back-up system)
- Pressure sensors encapsulated by potting system

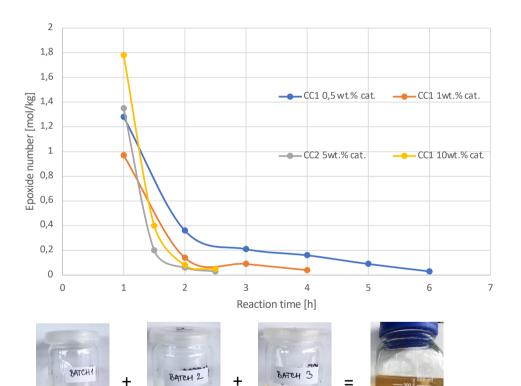
Target:

- Adjustment of key parameters rheology, curing conditions, Tg, tensile properties, thermal conductivity, and electrical • resistance according to the selected target applications.
- TRL: 4-5 •

The optimization:

- Verification of reproducibility of cyclocarbonates synthesis
- Optimization of formulations of the predeveloped (H)HNIPU systems •

esa European Space Agency



Synthesis of cyclocarbonates - optimization

- Synthesis
 - Newly 4 types of cyclocarbonates (3 derivatives of renewables)
- Catalysts concentration
 - ➤ The most optimal TBABr catalyst concentration is 0.5-1.0 wt. % when the constant conversion ≥ 99% is reached after ca 6h.
 - Chemical structure confirmed by NMR.
- Catalysts regeneration
 - Possible by extraction, however with limited purity and yield.
 - Recycling extra technological step requiring solvents waste management – economically/ecologically ineffective.
- Synthesis reproducibility scale up
 - Semi scale lab pressure reactor 300 g of cyclocarbonate per batch with conversion over 99 %.
 - However, increase batch volume from 100 to 300 g reflected in 3x increase of the synthesis time.

ESA Contract No. 4000119685/17/NL/KML

"Development of "Green" Polyurethane Materials for Use in Spacecraft and Launcher Applications"

Conformal coatings - updated requirements

- Outgassing (required as per ECSS-Q-ST-70-02C: RML < 1.0%, CVCM < 0.1%).
- Viscosity ≤ 8 Pa.s. at RT.
- Working time: 60 90 min (Pot life min 1 h).
- Curing time < 7 days @ RT (preferably < 24 h @ 60 °C) for two components system and preferably less than 1 hour @ RT for one component system.
- Operation temperature preferably -60°C to 120°C.
- Glass transition temperature \leq 1 °C.
- Surface hardness \geq 70 Shore A.
- Volume resistivity $\geq 5.7 \times 10^{11} \Omega.m.$
- Tensile strength \geq 2,5 MPa at RT and \geq 45 MPa at -60 °C.
- Elongation at break \ge 90 % at RT and \ge 20 % at -60 °C.
- Resistance to common cleaning agents, such as isopropyl alcohol.
- Film quality inspection: Coating thickness and Uniformity of coating on selected surfaces.
- Ease of repair (e.g. by mechanical stripping).
- Linear thermal expansion coefficient (CTE) < $2 \times 10^{-4} 1/^{\circ}$ C.
- Thermal conductivity ≥ 0.35 W/m.K.
- Thermal cycling (10 cycles between LN2 and +120 °C at atm. pressure).
- Pull of strength before TC \ge 3 MPa (Al substrate) and after TC \ge 2.65 MPa (Al substrate).
- High temperature moisture absorption \leq 3 %.
- Resistance to common cleaning agent such as isopropylalcohol.

ESA Contract No. 4000119685/17/NL/KML

"Development of "Green" Polyurethane Materials for Use in Spacecraft and Launcher Applications"

Potting system - updated requirements

- Outgassing (required as per ECSS-Q-ST-70-02C: RML < 1.0%, CVCM < 0.1%).
- Viscosity ≤ 10 Pa.s.
- Working time at RT: 1-3 h (Pot life min 1 h).
- Curing time \leq 7 days @ 25 °C (preferably \leq 24 h @ 60 °C).
- Operational temperature -20°C to +80°C (preferably -60°C to +120°C).
- Glass transition temperature \leq 50 °C.
- Surface hardness ≥ 70 Shore D.
- Volume resistivity $\geq 1 \text{ G}\Omega.m.$
- Temperature range min from 20 °C to 80 °C, preferably from -40 °C to 120 °C.
- Tensile strength \geq 5 MPa @ 80 °C.
- Tensile strength ≥ 7 MPa @ RT.
- Elongation at break \geq 8 % @ RT.
- Elongation at break \geq 3 % @ -20 °C.
- Linear thermal expansion coefficient (CTE) < $2 \times 10^{-4} 1/^{\circ}$ C.
- Thermal conductivity ≥ 0.35 W/(K.m).
- Thermal cycling (10 cycles between LN2 and +120 °C at atm. pressure).
- Pull of strength before thermal cycling \geq 3 MPa (Al substrate) and after thermal cycling \geq 2.65 MPa (Al substrate).
- High temperature moisture absorption \leq 3 %.

Conformal coatings - optimization

Thermal

0.62

0.45

Optimization of the formulation composition ٠

Surface

83

80

- Modification by selected nanoadditives
- Viscosity reduction by reactive solvents •

Tg

1.1

-1.8

Sample ID

19E-101

19E-100

	[°C]	hardness [Shore A]	conductivity [W/m.K]	resistivity [Ω.m]	strength at RT [MPa]	break at RT [%]	urethane bond mass per total bond mass [%]
Requirements	≤1	≥ 70	≥ 0.35	≥ 5.7 e11	2.5	90	-
19E-83-MIX-1	4.2	74	0.33	4.2 e7	1.2	71	42,8

Volume

5.3 e6

3.7 e7

Tensile

2.3

4.8

Elongation at

93

122

esa

European Space Agency

Hydroxy

42,9

44,9

arianegroup

Content of

renewable

based

components

[wt. %]

_

51,3

49,3

30,5

Conclusions – CCN1

- Optimization of cyclocarbonation
 - Synthesis of 4 types of cyclocarbonates (catalyst content optimized to 0,5 wt. %)
 - Scale-up (300 g batch) and reproducibility successful
 - Recycling of catalyst economically and ecologically ineffective
- Optimization of formulations of the predeveloped NIPU conformal coating and potting materials according to the selected target industrial application (*TRL 4*).
 - In progress
- Validation of industrial applicability testing of breadboard demonstrator (pressure sensor) in a collaboration of the industrial partner (*TRL 5*).
 - Next steps