

R. Kurstjens, V. De Houwer, L. Eykens, K. Dessein Increasing Ge resource efficiency for future low-CO₂ multijunction solar cells

Ge as environmental hotspot in space missions Hotspots of Proba V

ESA Effective Use of Germanium Contract number: 4000128156/19/NL/FE

The work presented here was supported by the European Space Agency under the Effective Use of Germanium project

Key goals:

- 1. Recycling of backgrinding waters of Azur Space
- 2. Ge-on-Ge engineered substrates as alternative growth substrates

Umicore's vision on Sustainability

- Main focus is on sustainable sourcing of Germanium
- Key differentiator for Umicore is to establish a germanium supply chain with minimal CO₂ impact

→ Umicore's target is to reach 100% sustainable Ge

Environmental impact

Global Warming Potential of Germanium from 3 main sources

Robertz, B., Verhelle, J. & Schurmans, M. JOM (2015) 67: 412. https://doi.org/10.1007/s11837-014-1267-6

With almost half already coming from direct recycling and more than one third coming from sustainable sources such as Zinc mining waste, **Umicore is considered the most** sustainable manufacturer of Ge.

Umicore's vision on Sustainability

Importance of germanium recycling

CO₂ impact lower for entire production line

Germanium is included in list of EU's Critical Raw Materials (CRM)

Win-win for customer & Umicore

- → insusceptible to germanium price fluctuations
- → lower end-product price

Sankey diagram

100 000 wafers, 150 mm diameter, 225 μm delivered to customer, 145 μm after backgrinding

Grinding waters

Kerf loss

All Ge losses incurred in Umicore's internal flow are recycled. Ge losses incurred at the customer weren't fully recycled yet.

Recycling Ge from backgrinding of customers Early tests have shown that recycling will need to occur at the customer

Recycling flowsheet

Objectives:

- Min. yield of 80%
- High concentration
 Economically viable after-treatment

Summary of experimental work

Umicore's vision on Sustainability

ESA Effective Use of Germanium

radiation shielding (> 20 $\mu m)$ $^{\neg}$ functionality for which Ge is optional mechanical support (> 100 $\mu m)$.

Most customers think that germanium substrates are too heavy and too expensive. We are developing an engineered substrate that will allow them to use as little germanium as they want so that they can manufacture LIGHT and cheap germanium-based solar cells.

Sustainability as a differentiator

Reduce dependency of space sector on Ge as a critical raw material

ENABLING & SUPPORT

Reduce, Reuse, Recycle: Growing solar cells on nothing

20/03/2020 374 views 2 Likes

ESA / Enabling & Support / Space Engineering & Technology / Shaping the Future

Ge-on-Nothing prototype versions

v1.0

v1.1 sampled to Azur v2.0

v2.1 Sampled to Azur

Process improvement

Azur #2 v1.0

20

Improved roughness thanks to new litho stack

umicore

AZUR SPACE

ເກາຍc

18

Device results Sampling to Azur

- v1.1 structure
- 25 x 25 mm² dies
- on (n)-type Ge

- GaInP top cell + Ga(In)As middle cell
- No Ge bottom cell
- 20×20 mm² devices

- ✓ EQE curves superimposed!
- ✓ V_{oc}: only loss due to lack of Ge cell

Conclusions

Key goals were achieved:

- 1. Recycling of backgrinding waters of Azur Space is now operational
- 2. The proof of concept of Ge-on-Ge engineered substrates as alternative growth substrates was successful
- Umicore is continuing development of the Ge-on-Ge engineered substrates in the ESA ELLA project
- The Ge-on-Ge engineered substrate is a promising concept that attracts interest from the European value chain

Thank you

ACCICO (CO)