

POLITECNICO MILANO 1863

Uncooperative Objects Effective Imaging through Flexible Flyaround Guidance

ESA's 2021 Clean Space Industrial Days 20-24 September 2021

Andrea Brandonisio*, Michèle Lavagna

*Speaker

- Problem Architecture
- Problem Dynamics
- Decision Process Algorithm
- Main Test Campaign
- Conclusions

- Problem Architecture
- Problem Dynamics
- Decision Process Algorithm
- Main Test Campaign
- Conclusions

Introduction

- → Spacecraft <u>planning fly-around paths</u> via Deep Reinforcement Learning (<u>DRL</u>) fed by information derived from a set of images acquired during the *close-proximity operations*.
 - → optimize the <u>shape reconstruction</u> of an unknown and <u>uncooperative space object</u> through *image* processing.

Imaging based sensor suite on board the chaser is the baseline for target data acquisition and drives the proper fly-around guidance synthesis in the mission design phase.

The problem fits into the broad domain of technologies development for on-orbit servicing (**OOS**) related autonomous navigation

State of the Art and Research Objectives

This work has been developed from our previous formulation of **A2C algorithm** to solve spacecraft path-planning for uncooperative and unknown space object mapping [1] with **linear** neural networks.

State of the Art about DRL applied on spacecraft path-planning:

- Planetary landing trajectory [2].
- Planetary relative autonomous navigation [3].
- **Small bodies** exploration [4], [5].

[1] Andrea Brandonisio, Michèle Lavagna and Davide Guzzetti. "Deep Reinforcement Learning to Enhance Fly-aroundGuidance for Uncooperative Space Objects Smart Imaging". In: AAS/AIAA Astrodynamic Specialist Conference, Aug 2020.

[2] Brian Gaudet, Richard Linares, and Roberto Furfaro. "Adaptive Guidance and Integrated Navigation with Reinforcement Meta-Learning". In: Acta Astronautica 169, 2020.

[3] Richard Linares et al. "A Deep Learning Approach for Optical Autonomous Planetary Relative Terrain Navigation", 2017.

[4] David M. Chan and Ali-akbar Agha-mohammadi. "Autonomous Imaging and Mapping of Small Bodies Using Deep Reinforcement Learning". In: IEEE Aerospace Conference, 2019. [5] Margherita Piccinin and Michèle Lavagna. "Deep Reinforcement Learning approach for Small Bodies Shape Reconstruction Enhancement". In: AIAA Scitech 2020 Forum, 2020.

Research Scenario: e.INSPECTOR*

eINSPECTOR is a 12U CubeSat with VESPA Hold Point HO#1 1000 m. 8-20ki two optical instruments: IO#11000 m. drift HO#2 1000 m. 85kr IO#3 500 m. @5km Visible camera HO#4 500 m. 9-2km HO#5 200 m, @-2km IO#3 200 m, drift 1000 HO#6 200 m, @2km Infrared camera HO#7 100 m, 02km 500 IO#4 100 m, drift z m 0 1000 -500 The **objective** of the mission is the -1000 2.5 VESPA image acquisition and the flight x [m] -0.5 -1000y m -1 demonstration of new algorithms of relative navigation through image processing. esa

* In development at the Department of Aerospace Science and Technologies of the Politecnico di Milano.

Andrea Brandonisio, Michèle Lavagna

rianespa

- Problem Architecture
- Problem Dynamics
- Decision Process Algorithm
- Main Test Campaign
- Conclusions

Problem Architecture

Three main parts:

Chaser control

- Problem Architecture
- Problem Dynamics
- Decision Process Algorithm
- Main Test Campaign
- Conclusions

Translational-Rotational Dynamics and Visibility Model

Spacecraft-Object Relative dynamics:

- <u>Translational</u>: Eccentric Linearized 2° Order Differential Equations. Expressed in LVLH frame centred in target object c.m.
- Rotational: Euler's equations in LVLH frame, under small angles assumption.

<u>**Target Object</u>**: triangular mesh of polyhedron. <u>**Strong assumption**</u>: camera points towards target center.</u>

The **visibility** depends mainly on:

- The camera field of view (FOV)
- Camera incidence angle
- **Sun** illumination condition incidence angle.

- Problem Architecture
- Problem Dynamics
- Decision Process Algorithm
- Main Test Campaign
- Conclusions

Autonomous Decision Process

DRL Models (1)

DRL-based algorithm formulation three main models:

State Model

12 elements: relative translational position and velocity, relative rotational position and velocity.

 $S = \begin{cases} \frac{\dot{x}}{\alpha} \\ \frac{\dot{\alpha}}{\dot{\alpha}} \end{cases}$

Action Model7 actions: thruster fired along one of the six cartesian

directions or null action.

$$\mathcal{A} = \left\{ T_{x_{+}}, T_{x_{-}}, T_{y_{+}}, T_{y_{-}}, T_{z_{+}}, T_{z_{-}}, 0 \right\}$$

Action — translational relative dynamics equations

$$\begin{cases} \ddot{x} = \ddot{x}_{tr} + a_{x_{+}}\delta_{x_{+}} - a_{x_{-}}\delta_{x_{-}} \\ \ddot{y} = \ddot{y}_{tr} + a_{y_{+}}\delta_{y_{+}} - a_{y_{-}}\delta_{y_{-}} \\ \ddot{z} = \ddot{z}_{tr} + a_{z_{+}}\delta_{z_{+}} - a_{z_{-}}\delta_{z_{-}} \end{cases}$$

DRL Models (2)

Tasks requested to the agent:

- 1) <u>surviving</u> around the object;
- 2) taking good **<u>quality images</u>**;
- 3) obtaining the **best mapping** level;
- 4) reducing the number of control actions firings.

Reward Model Scores:

Position score *R*_d \rightarrow Task 1 ٠ **Time of flight** score R_t \rightarrow Task 1 • Sun incidence score $R_{\eta} = \frac{1}{n} \sum_{j=0}^{n} r_{\eta,j}$ \rightarrow Task 2 • **Camera incidence** score $R_{\varepsilon} = \frac{1}{n} \sum_{j=0}^{n} r_{\varepsilon,j}$ \rightarrow Task 2 • Map Level score R_m \rightarrow Task 3 • **Thrust Level** score R_f . \rightarrow Task 4 •

Reward Model
$$R_{k,1}$$
Reward Model $R_{k,2}$ $R_k = R_\eta + R_\varepsilon + R_d + R_t + R_m$ $R_k = R_\eta + R_\varepsilon + R_d + R_t + R_m + R_f$

ANN Configurations

	Policy Network		Value Network	
Layer	Elements	Activation	Elements	Activation
1^{st} Hidden Layer 2^{nd} Hidden Layer 3^{rd} Hidden Layer output	$\frac{10*\dim_{o}obs}{\sqrt{n_{h1}*n_{n3}}}$ $10*\dim_{a}ct$ dim_act	tanh tanh Leaky-ReLU softmax	$\frac{10*\dim_{o}obs}{\sqrt{n_{h1}*n_{n3}}}$ $10*\dim_{a}ct$ $\dim_{a}ct$	tanh tanh Leaky-ReLU linear

Policy and Value Networks Linear Case

objective

2

Policy and Value Networks <u>Recurrent Case</u>

	Policy Network		Value Network	
Layer	Elements	Activation	Elements	Activation
LSTM Layer 1^{st} Hidden Layer 2^{nd} Hidden Layer output	24 64 32 dim_act	- ReLU ReLU softmax	24 64 32 dim_act	- ReLU ReLU linear

- Problem Architecture
- Problem Dynamics
- Decision Process Algorithm
- Main Test Campaign
- Conclusions

Main Test Campaign

- Simple **parallelepiped**: 344 faces.
- <u>FOV</u>: 10°
- Control Interval: 30s
- 25 correct photos / face

Reward Models:

- *a.* $R_{k,1} \rightarrow$ without thrust level score
- *b.* $R_{k,2} \rightarrow$ with thrust level score

- a. RDM-A case:
 - → Rotational position and velocity
 - \rightarrow Sun phase
- b. RDM-B case:
 - \rightarrow Relative rotational position and velocity
 - \rightarrow Sun phase
 - → Relative position

objective

3

Test Results: RDM-A

Test Results: RDM-A – Trajectory

Recurrent (LSTM) Policy Agent:

Test Results: RDM-A – Thrust Level Analysis

Test Results: RDM-A – Action Control Profile

Linear (MLP-3) Policy Agent:

Initial Co	ndition [m]	Map Leve	el [%]	Time	[h]
[10, 1	.00, 10]	94		2.1	
	Reward Model		Firings [%]		
	$R_{k,2}$		-	75.4	

Test Results: RDM-B

Test Results: RDM-B – Thrust Level Analysis

Test Results: RDM-B - Trajectories

Recurrent (LSTM) Policy Agent:

Map Level [%]	Time [h]
50.7	1.06

Map Level [%]	Time [h]
84.3	1.27

Map Level [%]	Time [h]
76.1	2.21

- Problem Architecture
- Problem Dynamics
- Decision Process Algorithm
- ✤ Main Test Campaign
- Conclusions

Conclusions

Thank you for the attention. Any questions?

POLITECNICO MILANO 1863

Uncooperative Objects Effective Imaging through Flexible Flyaround Guidance

ESA's 2021 Clean Space Industrial Days 20-24 September 2021

