2021 Clean Space Industrial Days

Al-aided Guidance and Navigation for Dynamics Reconstruction of Uncooperative Spacecraft

Dr. Stefano Silvestrini, Prof. Michèle Lavagna

Outline

- Research Context & Motivation
- Research Objective and Methodology
- Neural Dynamics Learning & Navigation
- Neural-aided Guidance & Control
- Environment and External Agents Prediction
- Final remarks

Research Objectives

POLITECNICO MILANO 1863

Neural Dynamics Learning & Navigation: Dynamics Reconstruction $\dot{\mathbf{x}} = \mathcal{N}(\mathbf{x}, \mathbf{u}) \qquad \dot{\mathbf{x}} = A\mathbf{x} + \gamma(\mathbf{x}, \mathbf{u}) \qquad \mathbf{y} = A(\mathbf{x}) \cdot \mathbf{C}$

The dynamics reconstruction can be performed in three ways:

- 1. Neural Dynamics: Fully encapsulated in a NN → very powerful when RNN are used, need rough initialization
- 2. Neural Disturbance Reconstruction: Analytical models refined with disturbance approximation output of the NN → robust due to Lyapunov convergence RBFNN when dealing with uncertain disturbance
- 3. Neural Parameter Identification: Parameter estimation of given analytical models → suitable when only parameters are uncertain

Neural Dynamics Learning & Navigation:

Dynamics Reconstruction

 $\dot{\mathbf{x}} = \mathcal{N}(\mathbf{x}, \mathbf{u})$ $\dot{\mathbf{x}} = A\mathbf{x} + \gamma(\mathbf{x}, \mathbf{u})$ $\mathbf{y} = A(\mathbf{x}) \cdot \mathbf{C}$

The dynamics reconstruction can be performed in three ways:

- **1.** Neural Dynamics: Fully encapsulated in a NN → very powerful when RNN are used, need rough initialization
- 2. Neural Disturbance Reconstruction: Analytical models refined with disturbance approximation output of the NN → robust due to Lyapunov convergence RBFNN when dealing with uncertain disturbance
- 3. Neural Parameter Identification: Parameter estimation of given analytical models → suitable when only parameters are uncertain

Neural Dynamics Learning & Navigation: Fully-Neural Dynamics

Neural Network is trained with supervised learning using **measurements** as training data:

$$\min_{\mathbf{w}} \sum_{i} || \tilde{\mathcal{N}}_{T_s}(\mathbf{x}, \mathbf{u}, \mathbf{w}) - \mathbf{y}_{k+1} ||^2$$

Online learning refines and incrementally train the network

Recurrent Neural Networks catches temporal and secular behavior → more suitable to fully encapsulate the dynamics

Neural Dynamics Learning & Navigation: Dynamics Reconstruction $\dot{\mathbf{x}} = \mathcal{N}(\mathbf{x}, \mathbf{u}) \qquad \dot{\mathbf{x}} = A\mathbf{x} + \gamma(\mathbf{x}, \mathbf{u}) \qquad \mathbf{y} = A(\mathbf{x}) \cdot \mathbf{C}$

The dynamics reconstruction can be performed in three ways:

- 1. Neural Dynamics: Fully encapsulated in a NN → very powerful when RNN are used, need rough initialization
- 2. Neural Disturbance Reconstruction: Analytical models refined with disturbance approximation output of the NN → robust due to Lyapunov convergence RBFNN when dealing with uncertain disturbance
- 3. Neural Parameter Identification: Parameter estimation of given analytical models → suitable when only parameters are uncertain

Neural Dynamics Learning & Navigation:

Disturbance Reconstruction

Neural Dynamics Learning & Navigation: Disturbance Reconstruction

V. Pesce, **S. Silvestrini**, M. Lavagna, Radial Basis Function Neural Network aided Adaptive Extended Kalman Filter for Spacecraft Relative Navigation, Aerospace Science and Technology, vol. 96, 2020

Pros Adaptive EKF-RBFNN	Cons Adaptive EKF-RBFNN
Higher robustness when filter not tuned	Initial main learning process
Reconstructed perturbations	Stability guaranteed under certain bounds
Better average accuracy	

POLITECNICO MILANO 1863

Research Objectives

POLITECNICO MILANO 1863

Neural-aided Guidance & Control: Radial Basis Function Neural Network - Artificial Potential Field

APF reconfiguration coupled with a **neural controller** based on **reconstructed relative dynamics**

The set of ROE to be achieved are called **reference state** and indicated as δx_r

$$\Phi_a(\delta \chi) = \frac{1}{2} \xi_a \| \delta \chi_g - \delta \chi_r \|^2$$

Calculating the gradient:

$$\nabla_{\delta\chi_g} = \xi_a (\delta\chi_g - \delta\chi_r)$$

The repulsive potential is useful to calculate the trajectory in presence of other satellites, **avoiding collision between agents**.

$$\Phi_{r_{ij}} = \begin{cases} \frac{1}{2} \xi_r e^{-\frac{d_{ij}^2}{\eta}} = \frac{1}{2} \xi_r e^{-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{\eta}} & \text{if } d_{ij} < d_{lim}, \\ 0 & \text{if } d_{ij} > d_{lim} \end{cases}$$

The gradient of the potential is calculated using the chain-rule, which involves the coordinate transformation from Cartesian state X to ROE:

$$\nabla_{\delta\chi_g} \Phi_{r_{ij}} = -\frac{\xi_r}{\eta} e^{-\frac{d_{ij}^2}{\eta}} \cdot (\boldsymbol{X}_i - \boldsymbol{X}_j) \cdot J_{\delta\chi}^X$$

Neural-aided Guidance & Control:

Radial Basis Function Neural Network - Artificial Potential Field

The output of the artificial potential guidance is a set of ROE, which may differ from the target reference ones. **Feedback control law** to guarantee that the **forced guidance dynamics** is followed.

$$\dot{\delta\chi_{\mathbf{g}}} = -\nabla\Phi_{glb} + (\mathbf{A_k} + \mathbf{A_{J2}}) \cdot \delta\chi$$

Control Lyapunov function (CLF):

$$\dot{V} = \left(\delta\chi_g - \delta\chi\right)^T \cdot \left[-\left(\nabla\Phi_a + \nabla\Phi_r + \gamma(\delta\chi) + B\mathbf{u}\right)\right]$$

The following control law is derived:

$$\mathbf{u} = \mathbf{B}^{-1} \left[\left(\delta \chi_g - \delta \chi \right) - \left(\nabla \Phi_a + \nabla \Phi_r \right) \in \gamma(\delta \chi) \right]$$

The repulsive potential relies on **mutual relative position**, hence a distributed architecture.

----> Neural Approximation

Neural-aided Guidance & Control:

Radial Basis Function Neural Network - Artificial Potential Field Numerical Results RMS position SC1

Model-based Reinforcement Learning for Maneuver Planning: Architecture Use the learned dynamics to **Dynamics** enhance GNC Planner Control Measurements Reconstruction by Learning Dynamics Reconstruction Model predictive control (MPC) - like → optimization + closed-loop $\dot{x} = N(x, u, w)$ Plan through $\dot{x} = f(x, u)$ Execute first control for N_s steps action $\dot{x} = f(x, u) + N(x, u, w)$ Cost function: quadratic in target state distance + control effort $J(\mathbf{x}_{k}, \mathbf{u}_{k}) = (\mathbf{x}_{k+N} - \mathbf{x}_{k}^{*})^{T} \hat{S}(\mathbf{x}_{k+N} - \mathbf{x}_{k}^{*}) + \sum_{i=1}^{N-1} (\mathbf{x}_{k+i} - \mathbf{x}_{k}^{*})^{T} S(\mathbf{x}_{k+i} - \mathbf{x}_{k}^{*}) + \sum_{i=0}^{N-1} u_{k+1}^{T} R u_{k+1}$ $\dot{x} = N(x, u, w) \cdot C$ Subject to dynamics and thrust constraint.

Neural-aided Guidance & Control

CIENZE E TECNOLOGI

Neural-aided Guidance & Control SCIENZE E TECNOLOGIE AFROSPA7IAI Model-based Reinforcement Learning Algorithm Use the learned dynamics to enhance GNC Initialize NN **Constrained Optimization** Train by supervised **Collect Measurements** model learning $D = \{(x_k, u_k, x_{k+1})\}$ $\widetilde{N}(x_k, u_k, w_0)$ for N_s time steps $x_{k+1} = \widetilde{N}(x_k, u_k, w_k)$ **Execution of first control** action u_k S. Silvestrini, M. Lavagna, Neural-based Predictive Control

S. Silvestrini, M. Lavagna, Neural-based Predictive Control and Relative Trajectory Identification Algorithms for Relative Spacecraft Maneuvers, Journal of Guidance, Control and Dynamics, 2020

POLITECNICO MILANO 1863

2021 Clean Space Industrial Days - AI-GNC - Silvestrini

Actuators

Neural-aided Guidance & Control

Model-based Reinforcement Learning Numerical Results

S. Silvestrini, M. Lavagna, Neural-based Predictive Control and Relative Trajectory Identification Algorithms for Relative Spacecraft Maneuvers, Journal of Guidance, Control and Dynamics, 2020

PROS MBRL	CONS MBRL
Lower Δv	Initial learning process
Lower TOF (free variable)	Excellent performance with offline initialization
It manages non-modelled environment	Recurrent Neural Networks lacks implementation support

POLITECNICO MILANO 1863

2021 Clean Space Industrial Days - AI-GNC - Silvestrini

DIPARTIMENTO DI SCIENZE E TECNOLOGIE

atice and Astrodynamic

Research Objectives

Environment and External Agents Prediction: Collision Avoidance

Assuming only one agent is maneuvering and the rest following natural motion

Reconfiguring distributed formation \rightarrow each agent plans maneuvers autonomously \rightarrow need to know what the other agents are doing

One critical task for distributed operation is to safely maneuver avoiding collision between agents.

Assuming evolution following natural motion \rightarrow too restrictive

We need a technique to predict neighboring agents future trajectory based only on past observations of relative positions

MBRL: Model-based Reinforcement Learning IRL: Inverse Reinforcement Learning LSTM: Long Short-Term Memory

Environment and External Agents Prediction:

Inverse Reinforcement Learning for Collision Avoidance: Algorithm

The concept of Inverse Reinforcement Learning is to **estimate a cost function** that delivers an **optimal trajectory compatible with an expert demonstrated trajectory**.

In this research, parametrize the cost function:

Environment and External Agents Prediction: Inverse Reinforcement Learning for Collision Avoidance: Algorithm

In this research a nested optimization is developed:

SCIENZE E TECNOLOGIE AFROSPA7IAI

Autonomous

identification of external agents behavior

Environment and External Agents Prediction: Numerical Results

Swap the along track positions separated by 200 m.

The relative distance between the satellites **falls below the Keep-Out-Zone limit (100 m)**, when predicting neighboring trajectories using natural dynamics.

MBRL planner with an impulsive trajectory identification algorithm, such as IRL, allows a **safe reconfiguration**.

CIENZE E TECNOLOGI

e and Astrod

Research Objectives

PIL Validation: Test Results TI LAUNCHXL-F28379D

Discrepancy between CPU output and PIL module output in the order of 10^{-12} m/s^2

Elapsed times of execution: Runner Profiler

Routine	Avg [ms]	Max [ms]
ANN-learning	0.89	0.90
Navigation	0.81	0.82
Guidance	0.32	0.32
Control	0.28	0.33

POLITECNICO MILANO 1863

PIL Validation: Test Results BeagleBoneBlack

MBRL and MPC for IRL requires **double** precision. Discrepancy between CPU output and PIL module output in the order of 10^{-13} m/s²

PIL validation

On-board **resource utilization**:

qp: ~ 0.3 % for MBRL running 1/60 Hz s*qp*: ~ 0.5 % for MBRL running 1/60 Hz

Percentage of CPU time assigned to a task. Computed by dividing task execution time by sample time.

Elapsed times of execution: Runner Profiler **MBRL sample time is 60 s.**

Routine	Avg [ms]	Max [ms]
ANN-learning	0.89	0.90
MBRL (qp)	191.10	272.20
MBRL (sqp)	290.10	337.10

Thank you for your attention. Questions?

