

D4C: Design for Containment

WP1000 : State of the Art - Technological concepts

AO10323:

Containment Techniques to Reduce Spacecraft Re-Entry Footprint

e.NOVA :

"Let's Fly your Experiment, your Idea with our knowledge of the NEWSPACE industry "

STATUS : Litterature (Previous Activities)

Initial ESA CDF Micra D4D Webcast (2014)

APPROACH & SOLUTION :

D4D S/C TAS activity (2014-2016) => **RWA & Tank**

D4D S/C Airbus activity (2014-2016)) => **S2 MSI optical bench**

ALTRAN BB proposal : **Demise / Survive Block** (2015) => (Not selected)

D4D S/C OHB Activity => **Containment tether (2017)** => presented ESOC (2017)

D4D OP/L (TAS) : Carbonsat

D4D OP/L (Belstead/FGS) :

SECRET activity (Beck, Schleutker, Caiazzo, & Soares, 2019):

OUTCOMES & RESULTS :

RD [1] N. Eggen, T. Soares, L. Innocenti: Containment methods for the atmospheric re-entry of satellites, First International Orbital Debris Conference (2019).

Link at: https://www.researchgate.net/publication/337898815_Containment_methods_for_the_atmospheric_reentry_of_satellites

RD [2] D. Riley, I. Pontijas Fuentes, J. Meyer, G. Proffe, T. Lips: Design for Demise: Systems-level techniques to reduce re-entry casualty risk, 7th European Conference on Space Debris (2017). Link at: https://www.researchgate.net/publication/293824337_DESIGN_FOR_DEMISE_TECHNIQUES_TO_REDUCE_RE-ENTRY_CASUALTY_RISK

RD [3] J. Beck, I. Holbrough, J. Merrifield, S. Bainbridge, P. Doel: Demisability of Optical Payloads, ESA Clean Space Industrial Days (2017). Link at:

https://indico.esa.int/event/181/contributions/1420/attachments/1329/1554/2017_CSID_Beck_BRL_DemisabilityOfOpticalPayloads.pdf

RD [4] European Space Agency, ESA DIVE - DIVE - Design for Demise Verification Guidelines for Analysing and Testing the Demise of Man Made Space Objects During Re-entry, Issue 1 Revision 0, 2019.

Containment :	
 Make multiple non-demising objects impact as a single object, 	
The second secon	

D4C "Design for Containment" Task 1 Separated parts

STATUS : ALTRAN activities (2012-2018) -> e.NOVA Aerospace (2019-)

APPROACH & SOLUTION :

CLEANSAT Technological Building Block : DEMISE/SURVIVE BLOCK (Not Selected) Reaction Wheels DEMISE: (ALTRAN BB11)

OUTCOMES & RESULTS :

DCA potentially reduced up to >50% (TBC)

Tank reference area: 0.37m² RW reference area: 0.1m² (x4) DCA=1.45+(4x0.8)=**4.65m²**

100% of DCA

Continement box

Structural protective frame Reference area: 0.7m² DCA=**2.06m**²

44% of DCA

Architectural block

I/Fs linked & protected Reference area: 0.6m² DCA=**1.89m²**

Carbon-carbon impact

STATUS :

ALTRAN Research activities (2012-2018)

-> e.NOVA Aerospace (2019-)

APPROACH & SOLUTION :

Containement Box :

SVM Central Cone made out C/C

SYSTEM Impact Analysis /

(S3 Analysis made @ iso-resistance S3 analysis)

OUTCOMES & RESULTS :

+1.0 Hz Lateral Modes + 1.5 Hz Axial Mode **Negligible Impact** on Modal Analysis **But More Stiffness**

Displacements under 1g

		1gY	1gZ
Disp X – HComb	1.13 μm	1.34 μm	7.96 μn
Disp Y - HComb	-250.98 μm	14.71 μm	24.63 μn
Disp Z - HComb	-13.36 μm	-245.70 μm	1.51 μn
Disp X - C/C	1.70 μm	1.26 μm	6.88 μn
Disp Y - C/C	-190.30 μm	11.1 μm	25.17 μn
Disp Z - C/C	-10.16 μm	-183.42 μm	1.41 μn

The **central cone** of the Sentinel 3 satellite FEM were replaced by a **3.1mm NB41** carbon-carbon sheet with mechanical properties : E = **200 GPa** . / Density = **1970 kg/m3** / Yield limit = **169 MPa Mass = same** as original CFRP panels

STATUS : Reentry NAS **Systems** ORION X-34 Shuttle Ops X-37 EFT-1 SHUTTLE UPGRADES **APPROACH TPS Evolutions** SHARP CCF B1 & B2 X-33 SPACE SHUTTLE **OUTCOMES** NASP 2014 HIAD 2010 Ablative 2000 APOLLO Reusable 1990 -> Deployable ADEPT 1980 -> Inflatable 0 1970 INSIGHT STARDUST 1960 PHOENIX MARS PATHFINDER MAGELLAN **OSIRIS-REx** MARS DS-2 VIKING **MARS 2020** MSL **BLUNT BODY** GALILEO **PIONEER-VENUS** CONCEPT PAET (H. Allen) MER

7

arianegroup

NORCOAT®LIEGE

THERMAL PROTECTION PRODUCT LINE Norcoat® 4000 Norroat® 4011

STATUS : TPS State of the Art

APPROACH & SOLUTION :

Ablative Materials Aerogels

OUTCOMES & RESULTS :

NASA Legacy

Avcoat

PICA

Foams

EU - H2020

ASTERM

PROSIAL

NORCOAT...

aspen aerogels

DATA SHEET

Pyrogel® 2250

FLEXIBLE INSULATION FOR HIGH TEMPERATURES

Pyrogel* 2250 is a flexible aerogel nanoporous insulation blanket designed for hightemperature applications including transportation, power generation, thermal and fire protection, and tube bundles and small diameter tubing.

Using patented nanotechnology, Pyrogel® 2250 combines a silica aerogel with reinforcing fibers to deliver very low thermal conductivity, high temperature resistance, and good flexibility in an environmentally safe product.

Pyrogel® 2250 provides excellent thermal performance up to 392ºF (200ºC), while offering many advantages including low dusting, high tensile strength, high compressive strength and hydrophobicity.

Physical Properties

Thickness*	0.08 in (2 mm)
Max. Use Temp.	392°F (200°C)
Color	Black
Density*	10.7 lb/ft= (0.17 g/cc)
Hydrophobic	Yes
Materiai Form*	57 in (1,448 mm) wide x 450 ft (137 m) long rolls
Chloride content	Less than 35 ppm when tested using ASTM CB71
Tensile Strength (dnex at nacimum load, topical value)	317 psi per modified ASTM D5034, single layer specimen at 1 in width

STATUS :

TAS Group Experience

Optical Instruments Stable Structures

APPROACH & SOLUTION :

Reentry Body Techniques & Technos Reusable TPS : C/C, SiC etc...

OUTCOMES & RESULTS :

Expert , IXV Legacy -> Space Rider

ESA, prime Thales Alenia Space, launched 11.02.2015, successfully recovered

EXPERT

ESA, prime Thales Alenia space, spacecraft * completed in 2013, launch on hold

Reentry

IXV – TPS STATUS:

TOPIC: 7th EUCASS-330

STATUS:

Reentry Kits / Deployable Shield / F-TPS

APPROACH & SOLUTION :

IAD: Inflatable Aerothermal Decelerator DAD: Deployable Aerothermal Decelerator

OUTCOMES & RESULTS : NASA Legacy: EU H2020 initiative (EFESTO)

Reentry

SR-1 Features

8 ribs, 70 deg symmetric shape

- 125 km apogee (Mach 3 peak)

- Negligible aerothermal heating

4 layer carbon fabric system

0.7m deployed diameter

Unguided, ballistic entry

Sounding rocket payload

2

recovery

APL

thout ADEPT Project Approval

15-23m ADEPT HUMAN MARS

ADEPT SR-1 & Lifting Nano ADEPT

Simple, dual spring deployment system - Electro-mechanical deployment system Free fall, ground impact, on-board data - Parachute terminal descent, air-snatch recovery

LNA Features

- 12 ribs, 70 deg asymmetric shape with trim tab

LEO Secondary payload (ULA Centaur ABC)

- L/D = 0.19 (AoA = 11 deg), Guided hypersonic flight

7.6 km/s entry from LEO (Mach 27 peak)

Aerothermal heating (>100 W/cm², 3.5 kJ/cm²)

- 1.0m+ deployed diameter

- 6 layer carbon fabric system

STATUS : Reentry Kit / Deployable Shield

APPROACH & SOLUTION :

IAD: Inflatable Aerothermal Decelerator DAD: Deployable Aerothermal Decelerator

OUTCOMES & RESULTS :

a) NASA inflatable heat shield surviging Mach 20 emperature above 537°C. ThalesAlenia

Space

a Thales / Leonardo company

b) deployable containment heat shield proposed by E.NOVA

Figure 1-9: Example of "full" containment solutions

STATUS :

APPROACH & SOLUTION :

Wire Link & Net Cage

OUTCOMES & RESULTS :

Figure 1-10 tethered feet on carbonsat solution proposed by deimos to reduce number of falling distinct parts (one instead of 3)

Figure 1-13 Tungsten rope delivered by Stanford Figure 1-11 Thin wire made in molybdenum alloys by

Plansee

Figure 1-12 View of molybdenum mesh to encapsulate together not demisable elements

<u>STATUS :</u> SMA (Shape Memory Alloys)

APPROACH & SOLUTION :

Auto-Thermo activated Mechanisms \Rightarrow Need TPS (Max OPS T° TBC)

OUTCOMES & RESULTS : D4C Techniques/Technos "Magic Rope " => Attach Elements (DCA=??) "Magic Spring" => Reduce DCA

TRIGGY®

STATUS :

Already Tested in PWT @ DLR ⇒ESA D4D Activity Design for Dismantlement & Break-up (OHB Awarded)

Full Success Techno

The most accurate and reliable Overall ranked **3rd/31 technos**

(Max OPS **T°=600**°TBC)

OUTCOMES & RESULTS : D4C Techniques/Technos

"Foldable Structures" \Rightarrow Close Box Mechanisms

"SMA Torque Hinge" => Fold Baffle & Close Box

HECTOR® (SINGLE)	HES190	HES118	HES290	HES218	HES390	HES318
Total length (mm)	90		180		270	
Fasteners length (mm)	2 x 10	2 x 5	2 x 15	2 x 10	2 x 25	2 x 15
Operational length (mm)	70	80	150	160	220	240
Diameter (mm)	12.8	9.7	21.1	13.8	28.4	18.0
Nominal deployment angle (°)	90	180	90	180	90	180
Maximal deployment angle (°)	110	220	110	220	110	220
Deployment accuracy ¹ (°)	2	4	2	5	2	4
Reproductibility (°)	1	2	1	2	1	2
Maximal torque (N.m)	6	1	56	8	118	29
Torsional stiffness (hot) (Nm/°)	1,7	0,2	17	1,2	53	4,3
Torsional stiffness (cold) (Nm/°)	0,2-1,7	0,02-0,2	1,8-17	0,1-1,2	5,8-53	0,5-4,3
Mass (g)	32	11	292	82	941	280
Power (W)	32	11	145	41	469	140
Nominal voltage ² (V)	8	8	16	16	110	28
Nominal current (A)	4	1,5	9	2,5	4,5	5
Actuation duration (s)	300	300	600	600	600	600

Figure 1-23 Example of (a) HR optical payload containment by a shell with close up cover and (b) Nimesis Self ignited SMA bolt release already qualified

CONTAINMENT METHODS

///Regroup

Architecture changeAdaptative change

/// Protect

Protection Upgrade Protection Addition Heat Shield Implementation

/// Attach

I Specific attachmentI Interface change

I Design change

///Encapsulate

- I Partial Encapsulation
- I Total Encapsulation

PROS :

Switch from Controlled Reentry ⇒To NON Controlled Reentry

Propellant Capacity /2 or /3 Propulsion system : as Usual (Simple) S/C reliability : no EOL disposal

S/C 2tons -> 1ton S/C price decreased (NRC& RC)

Switch L/V =>Soyuz/AR6 -> VEGA L/V Price :/2 <u>CONS</u>: Low TRL Innovations Needed Technological Developments

More surviving Mass ? Higher kinetic Energy

Better 1 lethal impact Twice the Energy Than 2 lethal impacts half the Energy => See limits in Sheltering effects

CONCLUSION :

With just some technological developments

=> COULD BE a GAME Changer :

If S/C can switch to Controlled -> Non Controlled Reentry

