LCA SiC/AISi study

Comparing alternative materials for optical instrument structural parts

DEFENCE AND SPACE

Ariane Bouilly (ADS) – Nicolas Mazollier (Capgemini consulting – ex Altran) ESA Clean Space Industrial Days 23 September 2021

Studied Product and study setup

DEFENCE AND SPACE

Airbus Amber

Comparison of SiC / AISi structural part of satellite optical instruments

COMPARED PRODUCTS

CRITERIA OF CHOICE

Part of Capgemini

3

- Good study case for a comparison \rightarrow interchangeable technologies for similar use cases
- Possibility to reuse study results for customers projects → LSTM for ESA with a full satellite LCA

Project Team, Timeline

PROJECT TEAM

- Altran LCA engineer
- TEXD LCA technical interface
- TESMT LCA product technical PoCs
- Suppliers

TIMELINE (small study)

•	Kick off	November 2020
•	Study Final Presentation	March 2021
•	Validated Deliverables	April 2021

Performed the "core" LCA Coordinating the LCA, Ensuring consolidation Gathering the technical inputs, activity data needed for the LCA Providers of data for supplied parts

4

Quick reminder on LCA Methodology

DEFENCE AND SPACE

Airbus Amber

Life cycle assessment

What is a Life Cycle Assessment (LCA)?

Life cycle assessment is a methodology that aims to **identify and quantify environmental impacts** of a product, a system or a service along its full life cycle (cradle to grave).

What are LCA main characteristics ?

6

Life cycle assessment

How to conduct an LCA ? (according to ISO 14040):

7

LCA Study Implementation

DEFENCE AND SPACE

Airbus Amber

1 – Goal and Scope definition

1. GOAL & SCOPE DEFINITION

- Definition of the objective of the study and the functional unit
- Description of the product and its life cycle, system boundaries establishment

FUNCTIONNAL UNIT

« Production of an optical satellite's instrument structural plate »

SYSTEM BOUNDARIES

Life cycle assessment

How to conduct an LCA ? (according to ISO 14040):

- Definition of the objective of the study and the functional unit
- Description of the product and its life cycle, system boundaries establishment

2. INVENTORY ANALYSIS (LCI)

- Data collection of inputs and outputs associated to the product studied
- Example of data to collect: bill of processes, bill of materials, air emissions...

2 – Inventory analysis – An iterative process

Get a first overview of the production process

AIRBUS

DEFENCE AND SPACE

Part of Capgemini

2 – Inventory analysis – An iterative process

Dependant on support from product technical PoCs

Get a first overview of the production process

Start collecting "easy" data, identify inputs/outputs, and evaluate which data will be possible to retrieve or not

23/09/2021 ESA Clean Space Industrial Days - LCA SiC/AISi study - Comparing alternati Waste also for optical instrument structural parts

an

Part of Capgemini

2 – Inventory analysis – An iterative process

Get a first overview of the production process and related inputs/outputs

Start collecting "easy" data, identify inputs/outputs, and evaluate which data will be possible to retrieve or not **Ensure as many "activity data" as possible are collected, and extrapolate unavailable data (using public literature, similar process, ...)**

	MERSEN BOOSTEC				
Step	Data known	Questions	Retrievable data	Ans	
*	•	*	(Y/N) ? 👻		
production	1.5 grain size	Energy ?	N		
	selection	location ?	Y		
		type of additive	Y		
	1 C Additive mix	energy?	Y	xxxx kWh	
	1.6 Additive mix	amount ?	Y	xxxx kg	
		location ?	Y	Margan Product provider and a second	
		energy?	Y	xxxx kWh	
	1.7 spray-drying	other?	N		
		location ?	Y	Marsel Brooks Landerson Protoci-	
2 la catatia		Energy ?	Y	xxxx kWh	
2. Isostatic	Powder pressing	type of machine used ?	Y	Annal all a second read	
pressing		location ?	Y	CO. Control Magazinet's Control of	
		Energy ?	Y	xxxx kWh	
3.cutting		type of machine used ?	Y	Frank and the dashed server	
		✓ location ?	Y	Menan Insular Read (France)	
	hining Machining	Energy	Y	xxxx kWh	
. blank machining		Materials needed ?	Y	CDFT such	
		location ?	Y	Mersen Revenue Reven Revenue	
		Energy	Y	xxxx kWh	
5.Sintering	Sintering	Materials needed ?	N		
		location ?	Y	Minister Inc. to local (Control)	
	ng Diamond grinding	Energy	Y	xxxx kWh	
6. final machining		Materials needed ?	Y	Origing muching	
		location ?	Y	Margohillerates Root (Nanos)	
7. Due non start		Energy	Y	Manual spray	
7. Dye penetrant		Materials needed ?	Y	Dye penetrant (0.2 l)	
Inspection		location ?	Y	Merson Boostes Baret (["secord])	
		Energy	Y	Charley adults period	
8. Cleaning Bath		Materials needed ?	Y	Water a beautity	
		location ?	Y	Noner Kontechtel (Franzi	Activity data from production
JON	13	23/09/2021	ESA Clean Spa	ce Industrial Days - LCA SiC/AIS	steps at suppliers facilities

AIRBUS

2 – Inventory analysis – An iterative process

LIFE CYCLE ASSESSMENT - SIC VS ALSI

INVENTORY : SIC INFORMATION

- □ 61.3%Si + 38.7%C (by mass)
- Buy to Fly ratio : 780 to 24.2 kg
- 2/3 from recycled SiC : only 260 kg of SiC primary produced
- 9 steps :

AIRBUS

- European supplier : Powder Production (1)
- Boostec Lannemezan : Powder Production (2)
- European subcontractor : Isostatic Pressing
- Boostec Bazet: Cutting, Blank Machining, Sintering, Final Machining, Control and Cleaning

Process Boostec

BLTRAN Part of Capgemini

AIRBUS

2 – Inventory analysis – An iterative process

LIFE CYCLE ASSESSMENT - SIC VS ALSI

INVENTORY : ALSI INFORMATION

- 60%AI + 40%Si
- Buy to fly ratio : 380 to 24.2 kg

9 steps :

AIRBUS

15

FFENCEA SPACE

- ECKA (Germany) or RSP (<u>Netherlands</u>): <u>Raw materials</u> production
- PLM (Germany) or RSP (Netherlands): Can Manufacturing, Hot Isostatic Pressing, Can Removing
- Machinist in Toulouse : Rough and Final Machining
- Bodycote (Paris): Temperature Stabilisation
- Testia (Toulouse): Dye Penetrant Inspection
- Modertech (St Etienne): Surface Treatment

Life cycle assessment

۰

.

•

16

How to conduct an LCA ? (according to ISO 14040):

Usage of LCA expert tool

DEFENCE AND SPACE

17

Part of Capgemini

23/09/2021 ESA Clean Space Industrial Days - LCA SiC/AISi study - Comparing alternative materials for optical instrument structural parts

å

ഫ്

å

ഫ്

ൻ

AIRBUS

3 – Impact Assessment

Modelisation of the global processes in GABI

Modelisation of each process including its inputs + outputs + combination with the relevant data sets of GABI database

3 – Impact Assessment

Modelisation of the global processes in GABI

Modelisation of each process including its inputs + outputs in GABI + combination with the relevant data sets of GABI database FOCUS: Integration of all specificities susceptible to modify the environmental impact: recycling loop

Life cycle assessment

How to conduct an LCA ? (according to ISO 14040):

20

4 – Results interpretation – the indicators

Selection of the method and indicators to consider

> Indicators considered as priority indicators by ESA

21 Part of Capgemini

С

4 – Results interpretation – the raw data

Impact category	Unit	total	Powder curopean	Powder Boostec	Pressing	Cutting	Blank Machining	Sintering	Diamond machining	CIEVY
Climate change, default, excl biogenic carbon	[kg CO2 eq.]	3.78E+03	Quantitative of the	e evaluation impact	6.43E+02	But also	o for each low al modelled	/er /E+03	3.41E+02	2.32E-0
Climate change, incl biogenic carbon	[kg CO2 eq.]	3.82E+03	3.59E+02	2.18E+02	6.63E+02	2.15E+00	7.53E+02	1.48E+03	3.45E+02	2.32E-01
Fine Particulate Matter Formation	[kg PM2.5 eq.]	4.83E+00	6.62E-01	3.82E-01	7.05E-01	3.04E-03	1.04E+00	1.57E+00	4.68E-01	4.36E-04
Fossil depletion	[kg oil eq.]	8.46E+03	3.23E+02	4.60E+02	2.37E+02	5.14E+00	2.01E+03	4.43E+03	9.94E+02	2.63E-01
Freshwater Consumption	[m3]	2.75E+02	1.71E+02	5.41E+00	2.25E+00	7.09E-02	2.66E+01	5.60E+01	1.28E+01	2.20E-03
Freshwater ecotoxicity	[kg 1,4 DB eq.]	5.34E+02	3.43E+01	1.32E+01	1.14E+01	6.45E-01	2.48E+02	1.06E+02	1.21E+02	1.16E-02
Freshwater Eutrophication	[kg P eq.]	1.52E+00	7.11E-02	5.74E-02	4.57E-01	1.16E-03	3.54E-01	4.37E-01	1.44E-01	7.76E-05
Human toxicity, cancer	[kg 1,4-DB eq.]	2.10E+02	1.67E+01	8.45E+00	2.91E+01	1.69E-01	5.94E+01	6.92E+01	2.73E+01	8.42E-03
Human toxicity, non-cancer	[kg 1,4-DB eq.]	6.69E+03	For each	type of impac	33E+02	5.57E+00	2.03E+03	2.28E+03	9.62E+02	2.83E-01
Ionizing Radiation	[kBq Co-60 eq. to a r]	1.65E+04	for the glo	bal production	on .33E+01	1.06E+01	4.23E+03	9.46E+03	2.11E+03	2.85E-02
Land use	[Annual crop eq. y	1.65E+02	2.07E+01	7.41E+00	2.01E+01	9.69E-02	3.49E+01	6.55E+01	1.63E+01	5.71E-03
Marine ecotoxicity	[kg 1,4-DB eq.]	6.58E+02	4.37E+01	1.66E+01	1.91E+01	7.80E-01	2.99E+02	1.32E+02	1.46E+02	1.49E-02
Marine Eutrophication	[kg N eq.]	4.11E-01	5.75E-03	1.48E-02	3.13E-02	2.71E-04	1.01E-01	2.09E-01	4.84E-02	6.07E-06
Metal depletion	[kg Cu eq.]	1.49E+01	1.84E+00	9.44E-01	1.57E+00	1.15E-02	4.33E+00	4.16E+00	2.07E+00	2.02E-03
Photochemical Ozone Formation, Ecosystems	[kg NOx eq.]	1.00E+01	1.56E+00	7.64E-01	2.72E+00	4.27E-03	1.51E+00	2.79E+00	6.94E-01	1.79E-03
Photochemical Ozone Formation, Human Health	[kg NOx eq.]	9.76E+00	1.52E+00	6.91E-01	2.68E+00	4.18E-03	1.48E+00	2.72E+00	6.77E-01	1.34E-03
Stratospheric Ozone Depletion	[kg CFC-11 eq.]	4.76E-03	6.47E-04	3.11E-04	3.39E-04	2.55E-06	9.64E-04	2.03E-03	4.66E-04	2.02E-07
Terrestrial Acidification	[kg SO2 eq.]	1.26E+01	1.74E+00	1.04E+00	1.82E+00	7.79E-03	2.67E+00	4.06E+00	1.21E+00	1.17E-03
Terrestrial ecotoxicity	[kg 1,4-DB eq.]	2,78E+04	3.54E+03	9.78E+02	7.40E+03	1.69E+01	6 13E+03	6 30 ⊑ ±03	3 12⊑⊥03	1.10E+00
22 23/09/2021 ESA Clean Space Industrial Days - LCA SiC/AISi study - Comparing alternative materials for More details on impact calculation										

4 – Results interpretation – How to read the graphs

4 – Results interpretation – Global Comparison

4 – Results interpretation – Global Comparison – ESA priority indicators

AIRBUS

4 – Results interpretation – Global SiC Analysis

Part of Capgemini

27

Part of Capgemini

4 – Results interpretation – Global AlSi Analysis

28

Part of Capgemini

4 – Results interpretation – conclusions and recommendation

AIRBUS

Questions - Discussions

DEFENCE AND SPACE

Airbus Amber

DEFENCE AND SPACE

BACK-UP SLIDES

