

OHB's Current Challenges and Future Solutions in LEO EOL

Mark Fittock, Carmen Velarde, Charlotte Bewick OHB System AG

We. Create. Space.

Key Challenge for LEO: Controlled vs. Uncontrolled

• How to best fulfil mission requirements for each case?

OHB A Trade-off Space S/C dry mass Launcher: Vega-C • For some missions, the choice is clear Chemical Uncontrolled For the others, there are many factors Propulsion reentry Controlled reentry No Yes Uncontrolled reentry Compliance to casualt risk of 10^-4? **Drivers:** Yes Launcher performance No Yes Launcher performance Type of Mission sufficient for full chemical sufficient for full chemical solution? Hybrid: Launcher Change to EP and use CP only for Mission Concept: Mission Concept: final burn Chemical Propulsion **Chemical Propulsion** Spacecraft mass restrictions Controlled Re-entry Uncontrolled Reentry Hybrid: Add CP for final burn Propulsion System Still compliance to casualty risk of 10^-4? No Chemical vs. Electric Propulsion Yes • Payloads auncher performance auncher performance • Can contain large casualty risk factor contributors sufficient for hybrid sufficient for full electrical solution? Yes Yes Mission Concept: Mission Concept: Hybrid Propulsion Electrical Propulsion Controlled Reentry Uncontrolled Reentry

Iteration

solution?

Щ

solution?

Backup Launcher

Ariane 6.2

or Ariane 6.4

Why Focus on Uncontrolled Re-entry?

- Cost benefits
- Lower mass due to lower propellant
- Less complexity in mission operations
- Higher certainty of maintaining compliance at EoL for potential mission extensions

Model Uncertainty

- No model is perfect
- Uncertainty in the models accuracy and in the modelling accuracy itself can drive results in an unrealistic direction
- Small differences in models can result in big differences for results! CFRP Electronic Cards

D4DBB

Improved Representation of Destructive Spacecraft Re-entry from Analysis of High Enthalpy Wind Tunnel Tests of Spacecraft and Equipment, Beck et al.

Hurdles to Uncontrolled Re-entry

• Early resolution of re-entry type is needed

• Needed to design and size spacecraft appropriately

Hurdles to broader adoption:

- Design adaptation and resultant costs
- More expensive unit solutions
- Heritage of current designs
- Restrictions on selection of units

Outlook for the Future

Better modelling of spacecraft

- Understanding built on ground and flight tests
- Standardisation

Lower kinetic energy options

• Break up into small low mass elements

Further units with increased demisability

- Selecting units for low Casualty Risk impact
- Tailoring selection for spacecraft compliance

Designing spacecraft for better demise

- Payloads designed for demise
- Structures and accommodation to promote earlier demise

What will that look like?

- Bespoke solutions to address critical areas in order to enable uncontrolled re-entry
 - Spacecraft utilising combinations of D4D solutions for low casualty risk
- More certainty for casualty risk compliance at EoL
 - Enabling mission life extension
- Maintaining fulfilment of key requirements for Spacecraft whilst allowing for more uncontrolled re-entry
- Lower and lower casualty risks enabled through uncontrolled reentry

Thanks for listening!

OHB's Current Challenges and Future Solutions in LEO EoL

Mark Fittock, Carmen Velarde, Charlotte Bewick OHB System AG

We. Create. Space.