Current Challenges and future solutions in LEO and GEO Clean Space Industrial Days

DEFENCE AND SPACE

Saturnino VAL SERRA – Daniel BRIOT 21 September 2021

Agenda

Introduction

Identified challenges

Possible solutions

Introduction

Airbus has participated to Clean Space related activities for several years

- CleanSat which covers activities to support the development of LEO platforms compliant with Space Debris Mitigation requirements
- Passivation studies
- Demisability studies
- Re-entry studies
- Design for Removal and Active Debris Removal

Airbus is involved in parallel in working groups addressing space debris related regulations:

- International standards on space sustainability (ISO, ECSS, etc.)
- Technical Regulation for the French Space Operations Act (FSOA)
- Working groups on Space traffic management

AIRBUS

Identified challenges/impacts/possible solutions

Observed trends/challenges	Impacts	Possible solutions
Fast, large and unexpected increase of in-orbit traffic (in particular in LEO with large constellations)	Envisaged evolution of regulations: •Higher reliability of EOL operations : > 95% or more envisaged in place of > 90%	 Improvement of the observability of S/C health status Improvement of probability of success of EOL operations (e.g. increased autonomy)
	• Shorter duration of atmospheric re-entry after mission completion (for LEO missions) : <5 years or less envisaged in place of < 25 years	 Orbit selection Increased DV capacity on-board
	 Globalization" of casualty risk for these missions are under discussions (different possible approaches) 	 Design for demise even for small satellites (e.g. demisable high pressure tanks)
	Emergence of space traffic management rules	 Autonomous collision avoidance manoeuvres

AIRBUS

Identified challenges/impacts/possible solutions

Observed trends/challenges	Impacts	Possible solutions
Emergence of in-orbit services (e.g. refuelling, debris removal,)	 Envisaged evolution of regulations: New requirements under discussion for "design for removal" (D4R) to ease capture of the S/C in case of failure in orbit 	 Specification of D4R need Analysis of the impact on S/C design (e.g. detumbling function)

Identified challenges/impacts/possible solutions

Observed trends/challenges	Impacts	Possible solutions
 Increased satellite survivability shown by tools and ground tests Evolution of re-entry tools show a higher number of surviving fragments Ground tests show higher survivability of materials (e.g. titanium) and equipments (e.g. electronic boards) 	Increased difficulty to comply to casualty risk threshold (10 ⁻⁴)	 Completion of on-going developments of demisable items (e.g. demisable reaction wheels, demisable high pressure tanks, demisable SADM) Convergence of the tools for re-entry analysis (DRAMA, DEBRISK) Try to improve the demisability of optical payloads Identification of stable and demisable materials ?

AIRBUS

Preliminary conclusion

The identified solutions will require dedicated studies and analyses either :

- At system level (LSIs)
- At equipment or technology level (equipment suppliers)
- At tool level (agencies)

Thank you

-