

ESA'S CLEAN SPACE INDUSTRY DAYS (2021 CSID) ELECTRICAL PASSIVATION - PCDU UPGRADE FOR POWER PASSIVATION

TAS-B TECHNOLOGICAL TESTS RESULTS ON COMPONENTS MOUNTING

20/09/2021 Date: Ref: PCDU-CLEAN-TASB-PPT-0044 Template: 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2021 Thales Alenia Space All right reserved

TABLE OF CONTENTS

Scope & Objectives

Technological test evaluation results

Main requirements

Conclusion

Trade-off solution

Date: 20/09/2021 Ref: PCDU-CLEAN-TASB-PPT-0044 Template: 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. @ 2021 Thales Alenia Space All right reserved

SCOPE AND OBJECTIVES

/// Objective : Isolation of the solar arrays embedded in the PCDU

- Identification of the components involved in the isolation of the solar array during the disposal phase.
- Manufacturing of technological breadboards and technological test evaluations

PROPRIETARY INFORMATION

MAIN REQUIREMENTS

A2. Specific requirements

A2-010	The isolation of the solar array shall be designed to be implemented within the Power Conditioning (and Distribution) Unit.
A2-020	The isolation of solar array shall remain active even in case of a main power bus powered down to oV as by a depleted battery.
A2-030	The isolation of solar array shall provide a SA passivation capability by short-circuiting or open-circuiting all SA sections, so that SA power is no more transferred to the main bus and battery charge becomes impossible.
A2-040	Two fully independent commands shall be used for passivation (for example arming command and firing command). At least one of the commands shall be a direct command from ground (HV-HPC as per AD10).

 Date:
 20/09/2021

 Ref:
 PCDU-CLEAN-TASB-PPT-0044

 Template:
 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

MAIN REQUIREMENTS

A2-240	During the satellite operational phase the following temperature range at TRP shall be considered:						ge at
	°C	Min Op	Мах Ор	Min Non- Op	Max Non- Op	Min Start up	
	Design Temperature limits	-20	+50	-30	+60	-30	
	Acceptance Temperature	-25	+55	-35	+65	-30	
	Qualification Temperature	-30	+60	-40	+70	-30	
	· · · ·		1				
A2-250	During the satellite operational phase the solution shall be able to withstand 15 thermal cycles per day between 20°C and 40°C.						
A2-260	During the disposal phase the solution shall be able of keeping the SA isolation considering a temperature range of -50 °C to 80°C.						
A2-270	During the disposal phase the solution shall be able to withstand 15 thermal cycles per day between 60°C and 80°C.						
A2-280	The passivation function shall be testable during the AIT phase at satellite level without the use of any specific test command.						

 Date:
 20/09/2021

 Ref:
 PCDU-CLEAN-TASB-PPT-0044

 Template:
 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

TRADE-OFF

Trade-off results for Isolation of the solar array in the PCDU:

- S3R : shunting solution
- S2R : opening solution
- MPPT : opening/shunting solution

	50V (un)regulated bus plateform	20	SWOOD	areliable	ather co	Jerose Pr	20/20	iciend
	Weight	10	40	10	15	15	10	Results
	Commun Relay Shunting	9	10	8	0	3	10	716
	Shunting Relay (1 contact per section)	10	10	6	2	4	10	743
C2D	Series Relay	10	7	10	0	2	6	563
SSK	Relays passivation main bus regulation	5	7	2	9	3	10	637
	MOSFET D-G S/C	4	7	3	9	6	10	680
	Serial Electronic Switch	0	4	10	8	0	0	374
S2R	Serial Relay	10	7	10	4	6	4	658
	Serial Electronic switch	3	10	10	9	5	10	828
	Serial Relay	10	7	10	8	10	0	740
MPPT	Common SA shunt	10	10	8	8	10	10	940
	Electronic input switch	9	10	10	10	9	10	970
	1 buck per SA section	9	10	3	10	9	10	900
	Galvanic Insulation	6	5	3	0	0	0	288
Passivatio	on module	10	10	10	0	0	10	700

Table 65 - Tradeoff summary for 50V (un)regulated bus platform

 Date:
 20/09/2021

 Ref:
 PCDU-CLEAN-TASB-PPT-0044

 Template:
 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

TECHNOLOGICAL TESTS – TESTED COMPONENTS

/// List of packages submitted to technology evaluation

- I SMD2 MOSFET
- I SMD05 MOSFET
- **I** SMD1 DIODE
- / TO258 DIODE
- **I POWER RELAYS**
- I HIGH POWER TRANSFORMER
- I LOW LEVEL RELAY
- **I** FP14 COMPARATOR

Date: 20/09/2021 Ref: PCDU-CLEAN-TASB-PPT-0044 Template: 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

TECHNOLOGICAL TESTS - TESTS VEHICLES

 Date:
 20/09/2021

 Ref:
 PCDU-CLEAN-TASB-PPT-0044

 Template:
 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2021 Thales Alenia Space All right reserved

TECHNOLOGICAL TESTS - TESTS VEHICLES

TO258 diodes

Date: 20/09/2021 Ref: PCDU-CLEAN-TASB-PPT-0044 Template: 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2021 Thales Alenia Space All right reserved

TECHNOLOGICAL TESTS - TESTS DESCRIPTIONS

/// Mechanical tests

I VIBRATIONS

- High level sine vibrations
 - Random vibrations

I SHOCKS

/// Thermal cycling tests file

- **I** MISSION PHASE
- **I** DISPOSAL PHASE

Electrical monitoring performed on all components during all the thermal cycling with low current (100 mA)

Mission phase

	Components on PCB	Components on SOCS	-
Temperature range	-55 °C / +110 °C	-55 °C / +110 °C	-
Number of cycles	1337	2241	-

Disposal phase

	Components on PCB	Components on SOCS
Temperature range	-55 °C / +110 °C	-55 °C / +110 °C
Number of cycles	1217	2050

/// Power cycling tests file

- **I** MISSION PHASE
- I DISPOSAL PHASE

Electrical monitoring performed with specific test set-up depending of mission or disposal phase Parameters :

- SA current
- V0C
- VBus

All the tests were performed in order to cover mission and disposal phase needs in term of ageing, electrical functionality, mechanical and thermal stress

 Date:
 16/12/2020

 ///
 10
 Ref:
 PCDU-CLEA-TASB-PPT-0038

 Template:
 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

TECHNOLOGICAL TESTS - TESTS RESULTS

/// Power components

	Component to evaluate	Mounting	Quantity & quality definition	result
Power relay	EL415	on PCB	4 : thermal cycling, EM grade	Succeed
			4 power cycling, grade 3+	
	EL215	on PCB	4 : thermal cycling	Succeed
			4 : power cycling	
Power diode	SMD1	on SOCS	10 : thermal cycling, grade 1	Succeed Succeed
			6 : power cycling, grade 1	
	TO-258	on PCB (mechanical structure + flex)		Succeed Succeed
			10 : thermal cycling, grade 1	
			6 : power cycling, grade 1	
Electronic switch	SMD2	on SOCS	10 : thermal cycling, EM grade	Succeed
			6 : power cycling, grade 1	Succeed
	SMD05		10 : thermal cycling, grade 1	Failed
		on SOCS	6 : power cycling, grade 1	Results under analysis
Galvanic isolation	ETD transformer	on mechanical structure	2	Succeed
			2	

 Date:
 20/09/2021

 Ref:
 PCDU-CLEAN-TASB-PPT-0044

 Template:
 83230347-DOC-TAS-EN-010

PROPRIETARY INFORMATION

/// All the technological test evaluation are done successfully except SMD05 mosfet.

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2021 Thales Alenia Space All right reserved

