Evolution of Concept for Passivation of Spacecraft Power Subsystem

How the concept has evolved from early studies to recent proposals

Harri Myllymäki, Juha Kuitunen, RUAG Space 21.09.2021, Clean Space Industrial Days

Together ahead. RUAC

Electrical Power Passivation Unit, PAU Overview

- Passivation implementation by short circuiting the Solar array sections.
- 12 SA sections, 5A, 150V
- No untimely passivation before end of mission, reliability > 0.9999
- Command IF, discrete HPC/SHPs (Standard High Power Command)
- The passivation function shall be reversible
 - As long as battery power available
- New Space COTS product, automotive AEC-Q, except the most critical parts
- Short circuit element, relay
 - Hi-Rel, 28VDC, 15A, 4PDT, ESCC 3602/004 (M402) selected to withstand 15 years mission + 25 years disposal phases

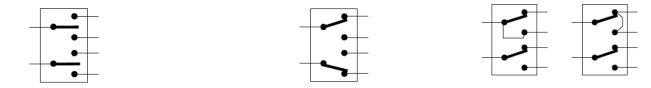
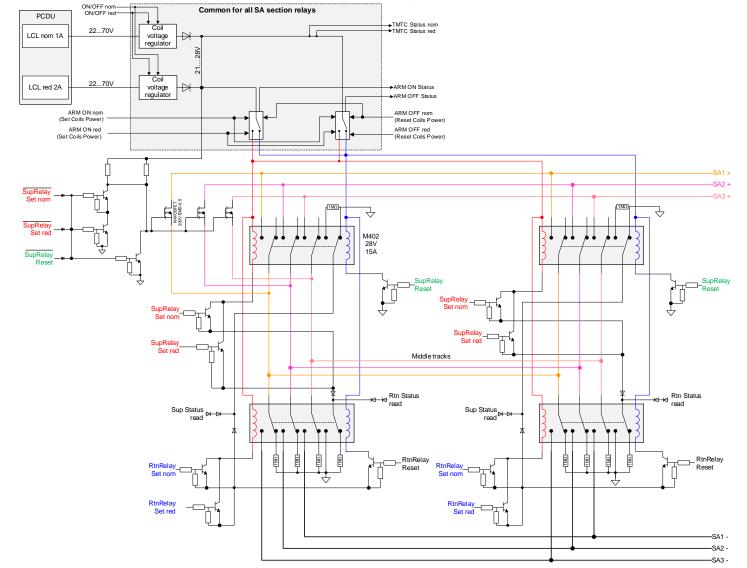


Figure G-1: Two open contacts (relay stuck in intermediate position) Figure G-2: Two contacts in opposite positions

Figure G-3: Short circuit between fix contacts

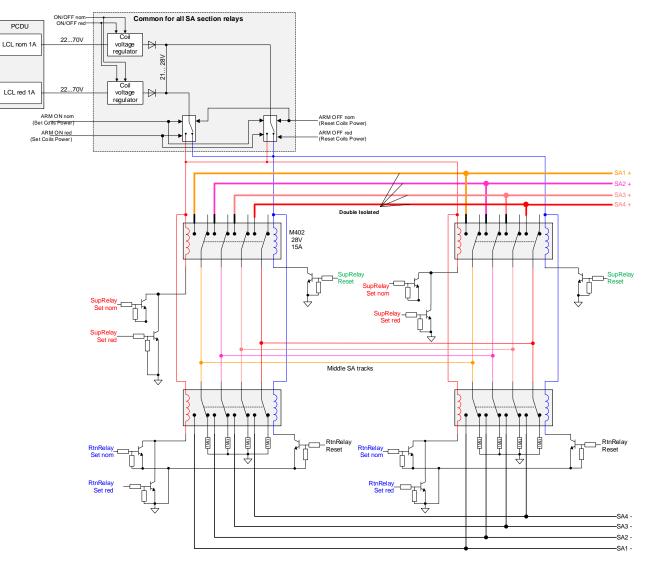

Together

ahead.

Relay Failure Cases, ECSS-Q-ST-30-02C

Three different PAU evolution concepts will be presented

2 | Evolution of Concept for Passivation of Spacecraft Power Subsystem, Clean Space Industrial Days | RUAG Space | September 21, 2021

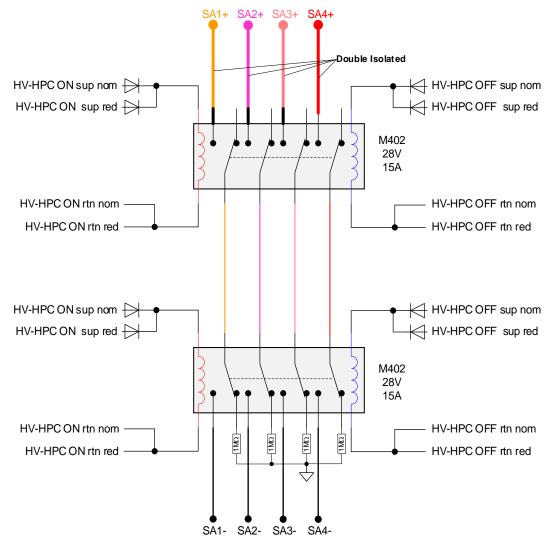


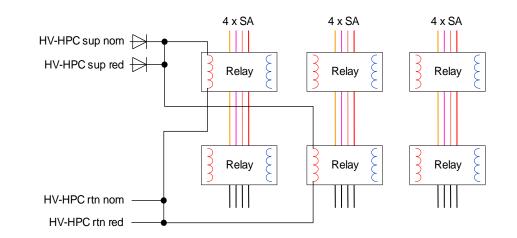
1. Most Reliable and Complex Concept

1. Most Reliable and Complex Concept

- Parallel and Serial SA short circuit redundancy
 - In total 16+2 Relays
- 200 V MOSFETs, parallel with upper relays, provide possibility to short circuit 150V SA voltage, protection against arcing, contact welding, relay max voltage 28V
 - Hi-Rel MOSFET selected, In total 12 MOSFETs
- Minimized HPC/SHP IF number
 - One HPC/SHP command controlling all upper/lower relays -> high current needed to drive several relay coils
 - PCDU LCLs and PAU coil voltage regulators provides the coil current capability
- Two stage redundant commanding, coil power ARMing + coil powering
- Discrete Relay status provided -> 3 SA sections /relay
 - A lot of electronics parts
- 50 krad TID requirement
 - Thick Aluminum shielding needed to protect Automotive electronics
- Mass ~3.9 kg, Envelope 250 mm x 180 mm x 45 mm (w x d x h).

2. Reduced Complexity




Together ahead. **RUAG**

2. Reduced Complexity

- MOSFETs removed
 - SA short circuit only when voltage is below 28V
- Relay status removed-> 4 SA sections / Relay
- Totally 12+2 Relays
- Reduced costs
- Requirement 50 krad -> 30 krad TID
 - Thinner aluminum shielding needed to protect automotive electronics
- Mass ~3.0 kg, Envelope 200 mm x 180 mm x 45 mm.

3. Most Simple and Cost Efficient

Together ahead. **RUAG**

3. Most Simple and Cost Efficient

- Parallel SA SC relays removed
 - In total 6 Relays
 - After one failure, 4 SA sections not able to SC
 - ARMing function removed, HPC/SHP command itself provides the ARM functionality
- Direct HV-HPC relay control
 - (more) 12 HPC/SHP needed, max two Relay/ HPC/SHP command
 - Simpler electronics (command oring diodes only)
 - Coil commands cross coupled to different relays to avoid activation by single command.
- Electronic components minimized
- Radiation shielding optimized
- Mass ~1.5kg, Envelope 180 mm x 120 mm x 45 mm.

Electrical Power Passivation Unit, PAU Conclusion

- Implementation of passivation unit was optimized in co-engineering phase with the customer to minimize the cost and complexity still maintaining adequate reliability
- Complexity of the PAU is finally a system level decision of the reliability

Thank You