"High Altitude Break-up Concepts with Additively Manufactured CF-PEEK" Joel Patzwald, 22.09.2021

Co-authors: Simon Hümbert (DLR BT), Dr. Isil Sakraker Özmen (DLR BT)

Design-for-Demise (D4D)

• Designing a spacecraft so that it ablates/ demises when entering the atmosphere uncontrolled

• Why? Reduce risk for humans on Earth

D4D techniques

- → Most effective D4D techniques:
- Maximize the break-up altitude
- Maximize the re-entry velocity
- Use more demisable material where possible and later improve the components area to mass ratio

D4D techniques

- → Most effective D4D techniques:
- Maximize the break-up altitude —— Goal of this work
- Maximize the re-entry velocity
- Use more demisable material where possible and later improve the components area to mass ratio

Course of the presentation (work flow)

Goal: Maximize the satellite break-up altitude using additive manufacturing

End-to-end design development procedure

1. Satellite case

Satellite case: Flying Laptop (FL)

Earth observation, 60x70x85 cm, 109 kg (small satellite is not optimal case for D4D but was available)

2. Primary structure design concepts

Patch concept

Insert concept

Proposed design: Patch concept

 1. Ref. satellite case
 2. Design concepts & material char.
 3. Structural analyses
 4. Re-entry analyses
 5. Demonstrator

Proposed design: Insert concept

Enhancing demisability of connectors (patches, inserts)

$Q > m \times h_a / A_s$

Material selection

- DLR BT prints ceramics, metals, thermoplastics
- Ceramics: High thermal properties → not suitable for high altitude demise
- **Metals**: Wide range of mechanical/ thermal properties → can be suitable
- **Thermoplastics**: Good thermal properties but mechanically "weak" → can be suitable
 - → CF30-PEEK selected

Geometry adaption by additive manufacturing

 $Q > m \times h_a / A_s$

Lattice

Geometry adaption: Patch concept

Patches: Sandwich parts

Geometry adaption: Insert concept

Lattice cell structure

Material characterisation CF30-PEEK

Thermal and mechanical material testing CF30-PEEK

Mechanical:

- G_{xy}, G_{xz} solid material: Shear testing
- $E_{x;y}$, E_z hex. honeycomb infill (ρ [%] = 10, 17, 25): Compression testing
- G_{xz} hex. honeycomb infill (ρ [%] = 10, 17, 25): Shear testing
- ➔ For structural analyses

Thermal:

- $T_{m,}h_{f}$: Differential scanning calorimetry
- c_p: Differential scanning calorimetry
- λ : Laser flash analysis
- ➔ For re-entry analyses

3. Structural analyses

Structural analyses requirements and performed analyses

2. Design concepts

& material char

1. Ref. satellite case

3. Structural analyses

4. Re-entry analyses

5. Demonstrator

Structural analyses: Patches

Patch concept: FE-model (ANSYS)

- Satellite simplified
- Patches and deck/ side panels: Sandwich parts (25 % hex. core infill)
- Material values: FL project data, literature and experimental characterisation of CF30-PEEK
- Subsystems added as point masses

Patch concept: Design development steps I2a: UFS -50%, C 15.7 mm I4: UFS -50%, C 15.7 mm, I3: UFS -50%, C 15.7 mm, I1: FS 1.4 mm, C 15 mm 30 x 30 mm holes 40 x 40 mm holes

I2b: FS 1.4 mm, C 15 mm, 30 x 30 mm holes

Patch concept: Design development steps

Reduced stability, increased demisability

2. Design concepts

& material char.

1. Ref. satellite case

4. Re-entry analyses

5. Demonstrator

3. Structural analyses

Structural analyses: Inserts

Optimisation of the insert design

- Insert geometry is optimised using resulting force on part and load limits
- Insert printed such that fibres align along main load axis

Bolt pretension	Tensile force	Resulting axial force
2965 N	1580 N	4545 N

Insert optimisation process

Starting point

Parameter optimised geometry

 1. Ref. satellite case
 2. Design concepts & material char.
 3. Structural analyses
 4. Re-entry analyses
 5. Demonstrator

Insert optimisation process

Lattice cell infill increases "dome" surface area by factor 7 \rightarrow much better demisability

Lattice optimised geometry

Topology optimised geometry

Insert optimisation process

Starting point

Final design (shown without lattice infill for simplicity)

 1. Ref. satellite case
 2. Design concepts & material char.
 3. Structural analyses
 4. Re-entry analyses
 5. Demonstrator

4. Re-entry analyses

Re-entry analyses: Patches

Patch design: Re-entry structural model with ESA-DRAMA

- ESA-DRAMA: Open source, re-entry survival and risk assessment (mitigation guideline compliance)
- Only upper FS and core of patches considered, lower FS does not need to demise for break-up
- Geometry needs to be simplified, especially patches
 - \rightarrow Core mass scaled: Q > m × h_a / A_s
- Analytical scale up → 100 kg, 500 kg, 1000 kg, 2000 kg, 4000 kg satellite models tested
- FL orbital data used

5. Demonstrator

4. Re-entry analyses

Patch design: Demise altitudes

- Min alt.: All patches demised → conservative breakup altitude
- Med. alt.: Approx. half of patches demised →
 viewed as good estimate
- Thicker patches when scaled up → reduction in break-up alt.

Re-entry analyses: Inserts

Insert design: Re-entry structural model with ESA-DRAMA

- Insert geometry in model corresponds approx. to geometry of dome protruding from structure
- Insert geometry is simplified, mass is scaled: $Q > m \times h_a / A_s$
- Analytical scale up → 100 kg, 500 kg, 1000 kg, 2000 kg, 4000 kg satellite models tested
- FL orbital data used

ukturmechani

Insert design: Demise altitudes

- All models break-up at over 104.5 resp. 106.5 km
- Break-up alt. near constant due to simplified scale up of insert geometry (less precise geometric model)

Break-up altitudes (median)

102 km (Increase of 24 km, nominal 78 km) 106.5 km (Increase of 28.5 km, nominal 78 km)

→ ESA: Minimal risk if break-up above 95 km [6]

5. Demonstration model

Demonstration model

Solid material (increased perimeters)

Solid material

Link to demonstrator printing process: https://www.linkedin.com/posts/dlr-bt_spacedebris-satellite-dlrbt-activity-6795616924253347840-6jO5

 1. Ref. satellite case
 2. Design concepts & material char.
 3. Structural analyses
 4. Re-entry analyses
 5. Demonstrator

Conclusion and next steps

Conclusion:

- Two designs (Patches, Inserts) were developed end-to-end from concept to demonstrator
- Material characterisation CF30-PEEK → Reliable material properties
- Structural analyses → Both designs feasible
- Re-entry analyses → Both designs strong increase in break-up altitude → Risk minimisation
- Demonstrator → Manufacturability
- Freedom of form of additive manufacturing most promising for demisability

Conclusion and next steps

Conclusion:

- Two designs (Patches, Inserts) were developed end-to-end from concept to demonstrator
- Material characterisation CF30-PEEK → Reliable material properties
- Structural analyses → Both designs feasible
- Re-entry analyses → Both designs strong increase in break-up altitude → Risk minimisation
- Demonstrator → Manufacturability
- Freedom of form of additive manufacturing most promising for demisability

Next steps:

- Improve existing designs e.g. embedded pre-loaded springs
- Further validate designs with higher fidelity re-entry software (i.e. SCARAB) and experimentally (i.e. plasma WT)
- Investigate the potential of AM for subsystem demisability
- Subsystems and secondary structures made of 3D printed SiC-based ceramics and metals

Q & A

Sources

1: DLR WEBSITE. last accessed: 09.05.2021. URL: https://www.dlr.de/content/en/images/2013/2/space-debris_9464.html.

2: <u>ESA - Call for Media: ESA and ClearSpace SA sign contract for world's first debris removal mission</u>
[3]: ESA - Design For Demise – A First Look

4 : ESA WEBSITE. D4D definition. last accessed: 09.05.2020. URL: http://www.esa .int/Enabling_Support/Space_Engineering_Technology/Design_for_Demise_ITT _ issued _ aiming _ for _ safer _ satellites# : ~ : text = The % 20concept %20involved%20is%20called,means%20of%20post.

5 : ESA WEBSITE. last accessed: 09.05.2021. URL:

http://www.esa.int/ESA Multimedia/Images/2013/10/b Space debris that has returned to Earth b.

6 : NASA WEBSITE. last accessed: 09.05.2021. URL: https://orbitaldebris.jsc.nasa.gov/quarterly-news/.

7: Mirko TRISOLINI, Hugh G. LEWIS and Camilla COLOMBO. Demisability and survivability sensitivity to design-fordemise techniques. In: Acta Astronautica 145 (2018), pp. 357–384. ISSN: 00945765. DOI: 10.1016/j.actaastro.2018.01.050.

8: Inc FAST RADIUS. Understanding 3D printed lattices: Properties, performance, and design considerations. Last accessed: 10.03.2021. URL: https://www.fastradius.com/resources/understanding-3d-printed-lattices-performance-and-design-considerations/.

Sources

[9]: Stijn LEMMENS, Quirin FUNKE and Holger KRAG. On-ground casualty risk reduction by structural design for demise. In: Advances in Space Research 55.11 (2015), pp. 2592–2606. ISSN: 02731177. DOI: 10.1016/j.asr.2015.02.017.

