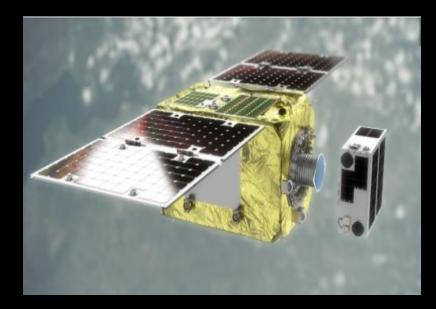
INITIAL USER-DRIVEN FRAMEWORK FOR DEVELOPING TRADE-OFF SCENARIOS FOR SPACE DEBRIS REMOVAL SERVICES

ESA Clean Space Industrial Days 2021 Stella Alexandrova, PhD S-Cosmos Ltd <u>salexandrova@s-cosmos.eu</u>


INTRODUCTION

Background

- Stakeholders
- Space Debris Markets
- Challenges & Opportunities
- Drivers impacting the Trade-off scenarios
- Initial User Driven framework
- Hypothetical Examples
- Conclusions

BACKGROUND

- Emergence of new IOS markets for GEO satellites and ADR markets in LEO
- ELSA- D successful technology demo for ADR servicing
- MEV 1 and MEV 2 successful in orbit servicing missions
- There is a *need* for inspection, maintenance, servicing, refueling and recycling of old satellites and unified space debris management and control.
- Lack of user-driven, cost-effective and affordable commercial In Orbit Services and unified space traffic management in the EU.
- There is an *opportunity* is to develop a user-driven framework for trade-off scenarios for space debris removal services for LEO/MEO/GEO/Lunar satellites

Courtesy: ELSA-D/Astroscale

Courtesy: MEV-2/Northrop Grumman

STAKEHOLDERS

In-Orbit Servicing (IOS) & Active Debris Removal Service(ADRS) Market

Demand

Space Agencies Satellite Owners Satellite Operators Payload Owners Insurance Companies Launch Service Providers ADRS/IOS Costs Prices Affordability Economies of Scale

Supply

Space Traffic Services ADRS service providers IOS Service Providers Insurance Companies

Courtesy: The commercial future of orbital services, Nederlandse Vereniging voor Ruimtevaart 2020/3

S-Cosmos

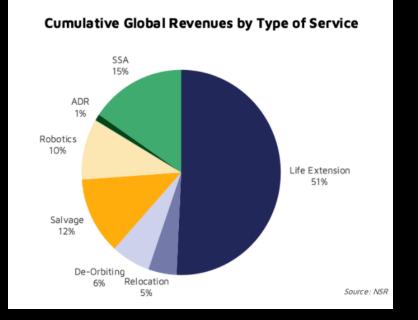
21/09/2021

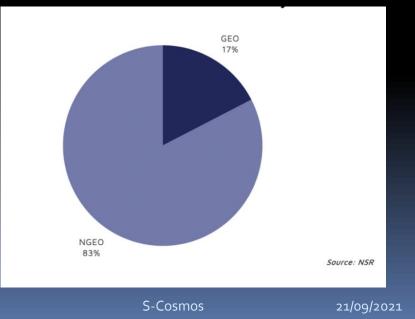
SPACE DEBRIS MARKETS

Spacecraft Inspection	Collision Avoidance Space Traffic Management	Spacecraft Removal	On-Orbit Servicing/On – Orbit Assembly	On-Orbit Assembly/MAIT
Tracking, locating and describing the targeted space debris Collect information of the satellite or s/c anomalies (e.g. antenna anomalies deployment, etc.)	Collision avoidance maneuvers On Orbit Satellite Servicing and Rescuing activities for collision avoidance	End of Life services and de-orbiting Placement in a graveyard orbit	Refueling Orbit raising AOCS P/L repair Detach certain parts of the satellite Robotic servicing and augmentation of the satellites capabilities Adding new payloads Augmentation of satellites capabilities	Modular satellite assembly in LEO/GSO Lunar missions

Courtesy: 71st International Astronautical Congress (IAC)- The Cyber Space Edition, IAC-20, E6,2,10 × ID58656, Alexandrova, S., J.Kreisel, T.Schervan, *Measuring the Direct and Indirect Economic Benefits of Commercial Active* Space Debris Removal Services (ADRS) based on the utilisation of disruptive future modular satellite systems

CHALLENGES & OPPORTUNITIES-Part I


- The biggest challenge in front of customers for IOS and ADR services, is whether IOS, ADR and recycling services are affordable for their business cases?
- Trade-off scenarios for satellite owners for extending the lifetime of their satellites or deciding whether to launch a new satellite, will be of critical importance for choosing future space debris services.
- Satellite profitability, keeping customers and cost-efficient IOS/ADR services are of importance for end-users
- IOS/ADRS service provides will have to define flexible and scalable solutions that generate economies of scale to become widely affordable


CHALLENGES & OPPORTUNITIES - Part II

Aging satellites in GEO orbits

- Diverse space debris markets in a nascent stage of development
- Unclear direct and indirect benefits
- In-Orbit Satellite services (IoS) and SSA cumulative revenues of \$6.2 billion by 2030 (Ref: NSR)
- High technology and market entry barriers for European companies, may be a challenge for European satellite owners and services providers for protecting European space infrastructure

Courtesy: NSR, In-Orbit Servicing & Space Situational Awareness Markets, 4th Edition (IOSM4)

DRIVERS IMPACTING THE TRADE-OFF SCENARIOS

Orbiting/OOS

On-Orbit Servicing (OOS) & Active Debris Removal Service(ADRS) Market **Costs/Prices** Affordability **Economies of Scale** Supply Demand Orbit Type (beyond 650km) 1. Number of Customers **Debris Size/Collision Risk** 1. 2. **Expected Satellites Launches Regulation/Standards** 2. 3. Satellite Type **Satellite Profitability** 3. 4. **OOS & ADRS Solutions** Time-to-Market <u>4</u>. 5-Competitors Launch/OOS Pricing 6. 5. **Governmental Programs Insurance Premiums** 6. 7. Service Cost for De-8.

Courtesy: 71st International Astronautical Congress (IAC)- The Cyber Space Edition, IAC-20, E6,2,10 x ID58656, Alexandrova, S., J.Kreisel, T.Schervan, *Measuring the Direct and Indirect Economic Benefits of Commercial Active Space* Debris Removal Services (ADRS) based on the utilisation of disruptive future modular satellite systems

Step 1 User Driven Cases

- Stakeholders
- Requirements from end users
- Expected assumptions/ benefits

\mathbf{V}

Step 2 Challenges & opportunities

- In Orbit Satellite servicing
- Active Debris Removal (ADR)
 - End of Life (EOL)
 - Recycling satellites

Demand

- 1. Orbit Type (beyond 650km)
- 2. Debris Size/Collision Risk
- 3. Regulation/Standards
- 4. Satellite Profitability
- 5. Time-to-Market
- 6. Launch/OOS Pricing
- 7. Insurance Premiums
- 8. Service Cost for De-Orbiting/OOS

Supply

- 1. Number of Customers
- 2. Expected Satellites Launches
- 3. Satellite Type
- 4. OOS & ADRS Solutions
- 5. Competitors
- 6. Governmental Programs

Step 3: Selection Criteria

- Affordabil
 - Technology innovation
 - New Markets
 - Time to market

Step 4: Trade-Off Scenarios

- Space Agencies
- Satellite Owners
- IOS/ADR service providers

S-Cosmos

HYPOTHETICAL EXAMPLES - Part I

Space Agencies

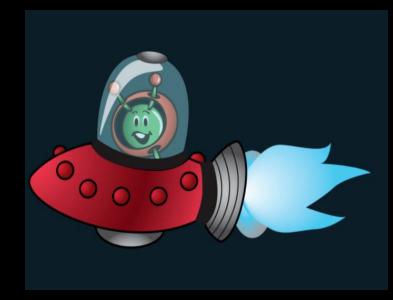
- Collision risks (ADM-Aeolus with Starlink-44)
- Cost savings from avoiding costly collision avoidance maneuvers
- Safety& Contingency
- Technology innovation
- Space debris protection & reduction
- Job creation, economic and industry spillovers

Satellite Operators

- Sustaining customer base
- Technology innovation from new satellite technologies
- Profitability, due to new customers
- Cost savings
- Reduced launch and insurance costs
- Job creation

HYPOTHETICAL EXAMPLE- Part II

IOS/ADR service providers


- Technology innovation
- Interoperability & scalability
- Safety & Contingency
- Space Infrastructure Evolution
- International partnerships & new markets
- Revenue Growth & profitability
- Job creation

Courtesy: ESA

CONCLUSIONS

- The *initial user-driven framework* will help all stakeholders to identify and develop trade-off and cost-effective mission scenarios
- Understanding the factors and benefits influencing the end-user choice, will help satellite owners develop economically viable trade-off scenarios, choose space debris services and extend affordably the life time of their satellites
- IOS/ADRS service providers will be able to crystallize their business models, develop market scenarios (optimistic, realistic, pessimistic), attract private investors, perform risk analyses and offer competitive prices

Courtesy: ESA

Thank You 😊