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Context ESA: Eco-design/Clean Space

How can space industry quantify its environmental impacts (and mitigate)?

O Standard approach: Life Cycle Analysis (LCA) evaluates inputs, outputs, and
potential environmental impacts throughout life cycle of products. LCA can deal
successfully with most phases of space activities (R&D, infrastructure, production,
assembly, in-orbit operations,...), which are common to other industries.

O Like launch, atmospheric re-entry phase is specific to space industry, highly
specialised issues, so assessing environmental impacts is more challenging.

« So far, focus on casualty risk in re-entry
environmental studies (fraction of debris
B opaoecrar that can survive and reach ground).

However, products of re-entry demise
Re-entry and demise of space vehicle . rele_ased |n. middle/upper atmosphgre
(satellites, upper stages) [T (unique with launch) as gases/particles:

e ‘. — Ozone depletion: particles, gases (e.g.
v halogens, NOx)?

\ . .

v — Climate: particles, greenhouse gases?

\ — Toxicity: e.g. heavy metals?

- A*”'

Demise of a burning Falcon 9 first stage — Meass® 4 2

Ground impact




ATISPADE: ATmospheric Impact of SPAcecraft Demise

Led by Varuna UK (1 of 2 parallel ESA-funded environmental assessments)
Two phases distinguished based on physical processes & spatiotemporal scales

1. Space object demise: Destructive re-entry aerothermodynamics
Assess mass losses, physical/chemical transformations, and final re-entry products

Non-equilibrium heat transfer

Break-up (Altitude at 75 ~ 85 km)
Non-equilibrium heat transfer

« Complex ablation
mechanisms

« Shock layer/wake:
hypersonic flow and
high-T (> 1000K)
chemistry

e — gases & particles re-

bomdaylayeredee @ | @ntry demise emissions

shock wave

Ablation

2. Fate and impacts of re-entry emissions: Atmospheric chemistry & dynamics

Large-scale dispersion by winds, low-T chemistry,
and removal of re-entry emissions (up to global scale)
— impacts re-entry emissions on ozone layer and
climate




Methodology: Linking multiple physical models

1. Aerothermodynamics

« Definition of representative U/S & S/C: construction, material composition.

 Demise assessments using 2 destructive re-entry models: few SCARAB
historic results, multiple new SAM results) — mass loss per material for range of
U/S and S/C for (un)controlled re-entry.

« Hot shock layer/wake non-equilibrium chemistry with MISTRAL.
— Re-entry emissions of relevant gases and particles (size, composition) 2-D
mapped (alt., along-track) for range of U/S and S/C for (un)controlled re-entries.

2. Atmospheric dynamics and chemistry
« Re-entry frequency scenarios of U/S & S/C

(based historical data and projections) N M N
— Time-evolving re-entry emissions on global scale A i
« Impact assessment using a global ’l,' %
chemistry-transport model REPROBUS (including Ei': SESEES
sub-grid scale representation of plume chemistry). I‘%ﬂ,' 7
— Ozone and climate changes. Lo e

Grid of global chemistry-climate model



Examples of spacecraft metal mass loss:

SCARAB versus SAM

Spacecraft
Initial altitude (km) 120
Initial latitude (deg) 45.2
Initial longitude (deQ) 10.0
Initial speed (m/s) 7800
Initial bearing (deg) 0
Initial flight path angle (deg) -0.01

« Material model is very important

* Overall, SAM and SCARAB

simulations in good agreement

Mass loss fraction
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Controlled vs. uncontrolled reentry: Aluminium case
Multiple SAM simulations with varying conditions

Controlled

Uncontrolled
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From uncontrolled to controlled re-entry : weaker and lower mass loss peak



Shock layer and wake non-equilibrium chemistry
with CFD model MISTRAL

Example of results for a large spacecraft debris item (modelled as spheres).
Axisymmetric 2D grid

Concentration field of gases of interest
CO, CO NO

see 3
2

SPco000
~3-8-R-R-1-]
200

* Produced gases of interest (radicals) in very near wake (10-15 m from centreline)
« Higher production of ozone-destroying radicals (e.g. chlorine) at higher speeds

« Significant NO production in shock layer



latitude

latitude

Atmospheric chemistry-transport simulations:

Impact of single re-entry event (20 T S/C)
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Re-entry rate (number/year)

LO
\_/
Re-entry mass (T/yr) = f(time) for different scenarios

(10 years)

Total re-entry mass rate (Ton/year)

Atmospheric chemistry-transport simulations:
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Long-term impact

Payload

" Re-entry number (nb/yr) = f(time) - DAMAGE 2013-2213 projection
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conditions)
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Global ozone change (%)

Global ozone loss (%) = f(time) for different scenarios
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Dominant drivers in O; destruction are emissions of NO and chlorine.

Other re-entry elements play a negligible role.
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Global ozone loss (%) = f(time) for different scenarios
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Global ozone loss scales more or less with re-entry mass

(unchanged material composition of S/C and U/S)
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Key findings

Ozone is found to be mostly destroyed at high latitudes, especially over

Antarctic continent.

In the case of the standard (conservative) scenario:

- Antarctic local O; concentration reduced by up to ~0.05% at 40 km.

- Antarctic O; column reduced by up to ~0.012 % during austral spring
(“ozone hole” period)

- Global mean annual O; loss varies between 0.0006 and 0.0008 %.

Dominant drivers in re-entry destruction are NO (nitrogen oxides) and
chlorine emissions. Other re-entry elements play a negligible role.

The globally averaged ozone direct climate radiative forcing resulting from
re-entry estimated to be ~-5 (-30 to +10) uW.m-2. The magnitude of re-entry
CO, climate forcing (generated by 20 years of re-entry) can be comparable
to the estimated ozone direct climate forcing.

Other re-entry elements generate RFs appear to play a marginal role in

climate forcing.
13
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