# Wave instrument for Distributed Space Weather Sensor System

János Lichtenberger 1,2, Balázs Heilig<sup>3</sup>, Péter Szegedi<sup>4</sup>, Fabrice Ciprianil<sup>5</sup> and Balázs Zábori<sup>6</sup>

1Eötvös University, Budapest, Hungary <sup>2</sup>Geodetic and Geophysical Institute, RCAES, Hungarian Academy of Sciences, Sopron, Hungary <sup>3</sup>Mining and Geological Survey of Hungary <sup>4</sup>BL Electronics Ltd, Hungary <sup>5</sup>TEC-EPS, ESTEC, ESA <sup>5</sup>Centre for Energy Research, Space Research Laboratory, Budapest, Hungary



# **Measurement requirements for SWE**

Table 1. A summary of the different observational requirements for the magnetosphere and radiation belts.

| Data for Earth Magnetosphere  | Measurement range |  |
|-------------------------------|-------------------|--|
| & Radiation Belt              |                   |  |
| High energy protons           | >10MeV            |  |
| High energy ions              | >10MeV/nuc        |  |
| Protons                       | 1 to 10MeV        |  |
| High energy ions              | 1 to 10 MeV/nuc   |  |
| Ions                          | 30 keV/nuc to     |  |
|                               | 1 MeV/nuc         |  |
| Electrons                     | 30 keV - 8 MeV    |  |
| Thermal and Supra-thermal     | 0 to 30 keV       |  |
| Electron                      |                   |  |
| Magnetospheric Radiowave      | 1 kHz - 500 kHz   |  |
| Spectra                       |                   |  |
| Thermal Ions Density and      | 0.1 eV - 30 keV   |  |
| Temperature                   |                   |  |
| Local Magnetospheric Magnetic | ~1 - 50000 nT     |  |
| Field in Orbit                |                   |  |
| Plasma Drift Velocity         | 0.1 eV - 30 keV   |  |

But no wave instrument is proposed in D3S!

Kraft et al., AA, 2018

Melanie mentioned yesterday a plan of "electron density" measurements on MEO/HEO Small Sat Study:

How can you measure electron density in magnetosphere without wave instrument?

### Geospace



## **Waves in Geospace**



[Thorne JGR, 2010]

# Why wave measurements are important?

### Wave-particle interactions:

1. Waves are generated by particles

#### **Chorus Emission due to Injection of Energetic Electrons**



[Santolik, Gurnett, Pickett, Parrot, Cornilleau-Wehrlin, JGR, 2003]

# Why wave measurements are important?

### Wave-particle interactions:

- 1. Waves are generated by particles
- 2. Particles are accelerated and scattered (precipitated) by waves
- 3. Waves related to SWE dynamics can also be measured **far** from the active regions (LEO/GEO orbit)

#### Waves:

- Whistlers and whistler mode hiss and chorus waves (ELF-VLF)
- Electromagnetic Ion Cyclotron Waves (ULF)
- Magnetosonic Waves (ELF)





# Why wave measurements are important?

### **Fokker-Planck Equation:**



### **Diffusion coefficients:**

$$\mathcal{D} = \lim_{V \to \infty} \sum_{n} \frac{q^2}{m^2} \int \frac{d^3k}{(2\pi)^3 V} \frac{i}{\omega_{\mathbf{k}} - k_{\parallel} v_{\parallel} - n \omega_c} (\mathbf{a}_{n,\mathbf{k}})^* (\mathbf{a}_{n,\mathbf{k}})$$
wave amplitude and polarization critical (RH I H X O and their)

combinations)

### 3.3.41 MR-013-M: Magnetospheric Radiowave Spectra - Measurement

| PRODUCT                                  | Magnetospheric Radiowave Spectra - Measurement                                                                                                                                                             |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Code                             | MR-013-M                                                                                                                                                                                                   |
| Input Data required                      |                                                                                                                                                                                                            |
| Data to be provided and associated units | Magnetospheric radio wave spectra                                                                                                                                                                          |
| Dynamic Range                            | TBD                                                                                                                                                                                                        |
| Physical Range                           | (1 kHz, 500 kHz)                                                                                                                                                                                           |
| Spatial range                            | 400 km - 60,000 km altitude, long: 0 - 360, lat: -90, 90                                                                                                                                                   |
| Spatial resolution                       | 2 observation points on polar LEO, 2 observation points on MEO and 2 observation points on GEO.                                                                                                            |
| Time Range                               | current date                                                                                                                                                                                               |
| Time resolution                          | 10 s                                                                                                                                                                                                       |
| Timeliness/Latency                       | The data shall be available with a maximum delay of 60 min. This requirement can be downgraded to 100 min subject to Customer approval.                                                                    |
| Accuracy                                 | 0,2                                                                                                                                                                                                        |
| Other Specific                           | AKR shall be measured from non-occulted location                                                                                                                                                           |
| Related CRD Requirement                  | SWE-CRD-GEN-1728                                                                                                                                                                                           |
| Justification of the requirements        | For incorporation into end-to-end space weather simulation                                                                                                                                                 |
| Comment                                  | Sensors should remain in two separate hemispheres (i.e. the phasing should roughly be 180 degrees). for MEO, Galileo altitudes are adequate (threshold), a greater range of altitudes is desirable (goal). |

# **Proposed Wave Instrument Specification**

| PRODUCT                                  | Magnetospheric Radiowave Measurement:<br>I. Monitoring mode<br>II. Survey mode<br>III. Burst mode<br>IV. Event detector mode                                                                                                                                                                                                                                                                                            |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Code                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Input Data required                      | Magnetic sensor: 1 search coil input<br>Electric field: 2 electric probes input                                                                                                                                                                                                                                                                                                                                         |
| Sensor booms                             | Magnetic field: 4m long deployable boom, sensor folded at the tip<br>Electric field: 2.5m long boom deployed in a same line as the search<br>coil boom, but opposite direction                                                                                                                                                                                                                                          |
| Sensor orientation                       | 3 axis stabilized platform: horizontal plane<br>spin stabilized platform: spin plane                                                                                                                                                                                                                                                                                                                                    |
| Magnetic sensor noise level              | 10Hz: 500fT/√Hz<br>100Hz: 50fT/√Hz<br>1kHz: 10fT/√Hz<br>10kHz: 10fT/√Hz<br>40kHz: 12fT/√Hz                                                                                                                                                                                                                                                                                                                              |
| Magnetic field signal<br>dynamic range   | 1-10000 <u>pT</u> /√Hz (80dB)                                                                                                                                                                                                                                                                                                                                                                                           |
| Electric sensor noise level              | DC-100Hz: 400nV/m/√Hz; 100Hz-500kHz: 50nV/m/√Hz                                                                                                                                                                                                                                                                                                                                                                         |
| Electric field signal<br>dynamic range   | 1-10000 <u>µV</u> /m/√Hz (80dB)                                                                                                                                                                                                                                                                                                                                                                                         |
| Data to be provided and associated units | Magnetospheric radio wave spectra                                                                                                                                                                                                                                                                                                                                                                                       |
| Physical Range                           | 10Hz-40kHz (magnetic component); DC-500kHz (electric component)                                                                                                                                                                                                                                                                                                                                                         |
| Spatial range                            | 400 km - 60,000 km altitude, long: 0 - 360, lat: -90, 90                                                                                                                                                                                                                                                                                                                                                                |
| Spatial resolution                       | 2 observation points on polar LEO, 2 observation points on $\underline{MEO}$ and 2 observation points on GEO.                                                                                                                                                                                                                                                                                                           |
| Time Range                               | current date                                                                                                                                                                                                                                                                                                                                                                                                            |
| Time resolution                          | I. Monitoring mode: FFT spectrum of 16384 data points/1 min of all 2<br>field components<br>II. Survey mode: FFT spectrum of 16384 data points/1 sec of all 2 field<br>components<br>III. Burst mode: raw data samples of 6 (10) sec of all the magnetic field<br>component; raw data samples of 1 sec of 1 electric field component at<br>predefined time epochs ("on demand")<br>IV. Event detector mode: 32 byte/sec |

# **Proposed Wave Instrument : SAS-D3S**

### **Operating modes:**

- I. Monitoring mode: FFT spectrum of 16384 data points/1 min of all 4 field components
- II. Survey mode: FFT spectrum of 16384 data points/1 sec of all 4 field components
- III. Burst mode: raw data samples of 6 (10) sec of all the 3 magnetic field components; raw data samples of 1 sec of 1 electric field component at predefined time epochs ("on demand")
- IV. Event detector mode: number of events in all categories per minutes (32 bytes/min)

Signal Analyzer and Sampler (SAS) instruments on:

### I. past/present:

1) Active satellite (1989-1992): SAS-1

- 2) COMPAS2 satellite (2005-2006): SAS2-K2
- 3) Chibis-M satellite (2012-2013): SAS3-Ch
- 4) Within Obstanovka experiment on ISS (2013-): SAS3-O1
- 5) RELEK-Vernov satellite (2014): SAS3-R

And

Intelligent Signal Detector Module in Plasma Wave Instrument, MMO, BepiColombo (ESA Contract No. 4000100050)

#### II. under development:

- 1) ELTESAT based on a concept of 'full featured' wave measurements in an ESA project (Contract No. 4000120693),
- 2) Trabant mission (2 satellites, 2023): 2xSAS3-T
- 3) Obstanovka Phase 2 on ISS (2023-2024): 4xSAS3-O2

### Signal Analyzer and Sampler (SAS) instrument specification

Input bandwidth: 1Hz – 40kHz Sampling rate: 80kSps Sensors power supply / input voltage range: ±5V Input supply voltage: +28V TM/TC interface: MIL-1553 Data interface: serial LVDS interface with data clock and strobe. Typical power consumption: 5W Operating temperature range: -30 – +60°C Mechanical size: 100x100x30mm Mass: 500g

# **TRL= 9-10**



### Signal Analyzer and Sampler (SAS) instrument sensors: search coil



### Signal Analyzer and Sampler (SAS) instrument sensors: electric probes





RELEK SAS3-R Monitoring mode 25 October 2014



2014.12.10. 08:54:56.037 UT SAS3 B(x)



RELEK SAS3-R Burst mode 12 December 2014

#### **1** -



First line: UT+0 2014-08-17 06:06:25





ñ

Unknown configuration Event detect with mask + new trigger during storage Event detect with energy + new trigger during storage Event detect with mask + trigger CH9 + new trigger during storage

| Sav | eu. |  |
|-----|-----|--|
| ът  |     |  |

- Event types: \_0 weak signal
- \_4 wide peak
- -8 short max. 13ms

1 disperse no peak \_5 multi peak event found with mask method

\_2 narrow peak \_6 long one peak external event

\_3 mid. peak \_7 long event

**RELEK SAS3-R Event detector mode** 17 August 2014



# D3S-RADMAG (Zábori et al.)



### AWDANet: a unique, complementing network to SAS-D3S

#### Automatic Whistler Detector and Analyzer Network AWDANet - Europe



#### AWDANet: a unique, complementing network to SAS-D3S

#### Automatic Whistler Detector and Analyzer Network AWDANet - World



- I. Wave data are inevitable for any SWE application/model/forecast
- II. SAS wave instruments have a long and successful heritage
- III. SAS-D3S wave instrument: an straightforward and important extension to D3S-RADMAG