

CubeSat compatible instrumentation for monitoring the radiation environment

R. Vainio^a, J. Gieseler^a, H.-P. Hedman^b, S. R. U. Kakakhel^b, P. Oleynik^a, J. Peltonen^a, J. Plosila^b, J. Praks^c, A. Punkkinen^a, R. Punkkinen^b, L. Salomaa^b, J. Tammi^b, H. Tenhunen^b, P. Virtanen^a, T. Westerlund^a

^a Department of Physics and Astronomy, University of Turku, Finland
 ^b Department of Future Technologies, University of Turku, Finland
 ^c School of Electrical Engineering, Aalto University, Finland

RADMON

Radiation Monitor for a CubeSat

RADMON: Energetic particles @ LEO

RADMON

Mass: 0.4 kg Power: 1 W Volume: 0.4 U

Analog Board Digital Board PSU Board

The Finnish Student Satellite

RADMON measurement principle: ΔE vs E_{res} method

 ΔE @ constant E_{res} gives the species

 Δa

lto-1

The Finnish Student Satell

Energetic (>10 MeV) protons

Inner-belt protons observed in SAA at a stable rate [not much orbit-to-orbit variations]

Fig. A. Punkkinen

Turun yliopisto

Aalto-1

Relativistic (>1.5 MeV) electrons

Inner-belt electrons observed in SAA at a stable rate Outer-belt electrons observed at higher latitudes more variable Quasi-trapped electron flux increases with longitude from trapped region

Fig. A. Punkkinen

RADMON electron detection efficiency in channel e1-5

Oleynik et al. (submitted)

Gieseler et al. (submitted)

Gieseler et al. (submitted)

Summary / RADMON

- Despite its low-cost, low-power and low-mass, RADMON is a very capable instrument concept
- FPGA-based signal processing allows several improvements for future models without changes in hardware
 - Better electron/proton separation
 - Extension of proton energy range to 250 MeV
- Sensitivity can also be improved ten-fold by increasing the size of the sensors with marginal mass increase
- Dynamic range of counting can be further improved by changing the scintillator material (to, e.g., LYSO)
 - Power consumption will increase, though
- Mass and size can be somewhat reduced by redesigning electronics
- Next version developed for constellation mission (see Huovelin et al. on Thursday)

Particle Telescope (PATE)

Particle Telescope aboard FORESAIL-1 mission

- Mass 1.2 kg
- Power 2.5 W
- Size 1.4 U
- Telemetry 1.3 kbit/s

Measures electrons and protons

- Electron energy range: 80–800 keV
- Proton energy range: 0.3–10 MeV

Prototype tested with radioactive sources (alpha and beta)

EQM will be assembled and functionally tested by the end of November

Qualifications: Dec-Jan —> TRL 6

Launch: 2020

More compact design

Size: 0.7 U Mass: 0.9 kg Power: 2.5 W Electrons: 0.1–1 MeV, >1 MeV Protons: 0.4–10 MeV, >10 MeV

Developed in collaboration with Aboa Space Research Oy for a small constellation mission concept (SCOPI).

Summary / PATE

- A high-fidelity particle telescope designed for mediumenergy electrons and ions
 - Qualification campaign about to start for the 1.4U device
 TRL 6 to be reached within 3 months
 - Launch on-board a 3-U CubeSat (FORESAIL-1) to polar LEO in 2020 —> TRL 9 within 15 months
- Compact variant for monitoring applications with somewhat higher energy range in preliminary definition phase
 - Representative prototype to be built and tested during 2020 —> TRL 5
 - Lots of heritage from PATE —> swift development cycle

Conclusions

- University of Turku develops CubeSat compatible instrumentation for high and medium energy particles
 - Protons: 0.3 10 MeV and >10 MeV
 - Electrons: 0.08 1 MeV and >1 MeV
- High-energy instrumentation is already flying hardware and the first medium energy instrument will fly in 2020
- We collaborate with several Finnish SMEs and can adapt our design quite flexibly to accommodate needs for various space weather missions.

Thank you for your attention!

Instrument for LEO constellation

- Based on Aalto-1/RADMON (TRL 9), but with significant improvements to cover
 - Protons: 10–250 MeV, ten differential channels
 - Electrons: >1 MeV, five integral channels
- Foreseen specs:
 - Mass <500 g
 - Volume <0.5 U
 - Power <1.5 W
 - Dynamic range up to 1 MHz in counting
 - Nominal GF ≥ 0.2 cm² sr (increasing with energy)
 - Data rate: configurable

