

CHESS:

Constellation of High Energy Swiss Satellites

EPFL

Outline

eSpace EPFL Space Center

Mission overview

- Collaboration between EPFL Space Center and Paul Scherrer Institut (PSI)
- Flight proven payload: Hard X-Ray compton polarimeter
- Constellation of 4 (or +) 3-Units Cubesats
- Low sun synchronous orbit 550 km
- Flight time of 3.5+ years
- Multiple science objectives:
 - Gamma Ray Bursts
 - Solar Flares
 - Space Weather

eSpace EPFL Space Center

Science objectives

1 - Permanent monitoring of the sky for Gamma Ray Bursts

- Detection of Gamma Ray Bursts (GRBs)
 - light-curves, spectra and conditional polarization (very strong GRBs)
- Event direction determination via triangulation

Science objectives

2 - Permanent observation of the Sun in hard X-ray energies

- Detection of Solar Flares
 - Light-curves, spectra and polarization
- Direct pointing, constellation crosscoverage
- Polarization measurement would be new and give essential constraints on beaming (measuring electron distribution)

Science objectives

3 - Observations of Space Weather events

- Measurement of particle fluxes and spectra (e, p, heavy ion)
- Detection of energetic injections
- Observation of temporality and 3D dynamic
- Permanent mapping of LEO radiation
- Unique set of identical monitors

Artistic representation of Solar Orbiter observing a solar flare

SSA SWE network

Data goals

- To correlate observation with other missions:
 - Solar Orbiter (Solar Flare)
 - Ligo & Virgo (Gravitational wave correlation with GRBs)
 - Be part of of the Interplanetary
 Network (GRBs)
 - Be part of D3S network (SWE)?

Main payload

POLAR Heritage

- POLAR space-borne hard X-ray
 Compton polarimeter
- Built by a collaboration of institutes from Switzerland, China and Poland.
- Purpose precise determination of the GRB polarization
- And very well suited for measurements of Solar Flares and Space Weather
- Launched in space on the Chinese Space Laboratory TG-2 on Sep 15th, 2016

Main payload

POLAR for CHESS

- Fast plastic scintillators
- Array of 8x8 bars
- Coupled to photomultiplier
- Weakly shielded with carbon-fibre enclosure
- Field of view > 2pi (half of the sky)
- Particle and energy sensitivity:
 - X-rays 10 keV 1000 keV
 - Electrons 300 keV > 10 MeV
 - Protons 10 MeV > 300 MeV
 - Heavy ion > 10 MeV/n

Main payload

Example of observations data from POLAR on TG2:

From October 2016 to April 2017, POLAR detected:

- 50 Gamma Ray Burst
- 17 Solar Flare (Only week one < B)
- 77 Storm Events

Quiet period

Gamma-Ray Burst

Solar Flare

Storm Event – relativistic electrons

Mass spectrometer

Plasma wave receiver

CHESS attractiveness

Lots of payload but little embarcation opportunities

Ideas for other payloads:

- Time of Flight mass spectrometer -Bern University
- Miniaturised plasma wave receiver from BepiColombo - Kyoto University
- Other...?

Incorporation of CHESS in SWE program

Part of SSA Distributed SWE Sensor System (D3S)

- Providing data for:
 - Radiation environment research
 - Monitoring of particle fields in a constellation
 - Contribution to forecasting of SWE events
 - Issuing alerting messages to community

EPFL

Project Organisation

CHESS will regroup institutions from all-around Switzerland, with EPFL as project lead.

EPFL

Project Timeline

Phase 0: Pre-phase A Phase A: Feasibility

Phase B: Preliminary definition

Phase C: Detailed definition

Phase D: Production, qual. testing

PRR: Preliminary Requirements Review

PDR: Preliminary Design Review CDR: Critical Design Review

AR: Assembly Review

Why CHESS now?

Three strengths:

- Constellation of 4+ identical Cubesat
- One sensor for a multipurpose mission
- Launch time under 3 years thanks to:
 - Flight proven payload
 - EPFL Space Center expertise in space missions

eSpace EPFL Space Center