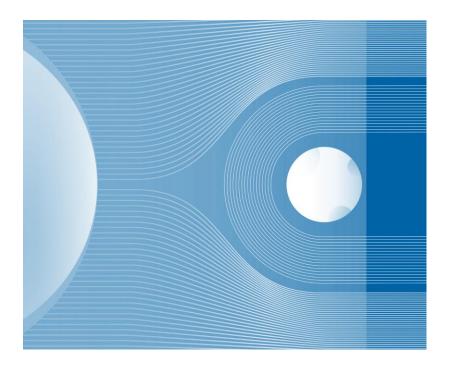
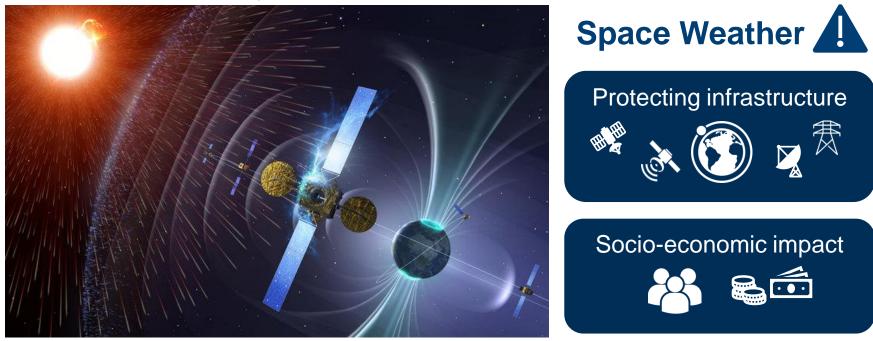
Development of a different range of magnetometers for space weather applications

P. Brown¹, C. Carr¹, J. P. Eastwood¹, H. Eshbaugh¹, T. Oddy¹, **C. Palla¹**, G. Berghofer², W. Magnes², B. Zabori³, D. Nolbert⁴, D. Milánkovich⁵ ¹Space and Atmospheric Physics, The Blackett Laboratory, Imperial College London, UK ²IWF Graz, Space Research Institute, Austria ³MTA-EK, Centre for Energy Research, Hungary ⁴Astronika, Poland ⁵C3S, Hungary



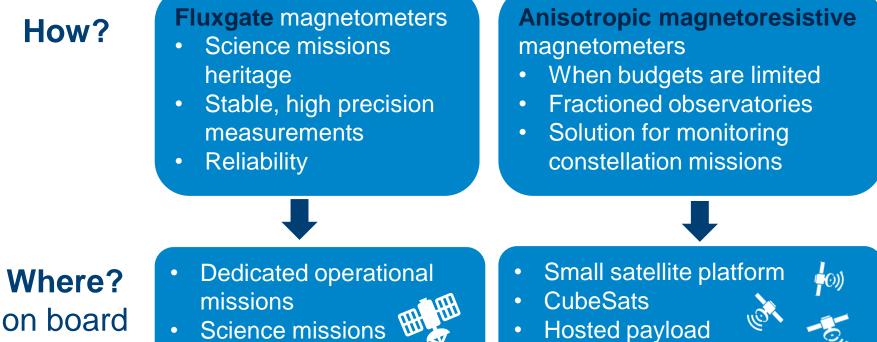
Instruments for ESA D3S, 23-24 October 2019, ESOC



- Background
- Fluxgate magnetometer
 MAG on LAGRANGE
- AMR magnetometer
 MAGIC on RADCUBE
- Conclusions

Space Weather. Credit: ESA

Need for variety of in-situ measurements at many points simultaneously (analogous to weather stations on the ground)

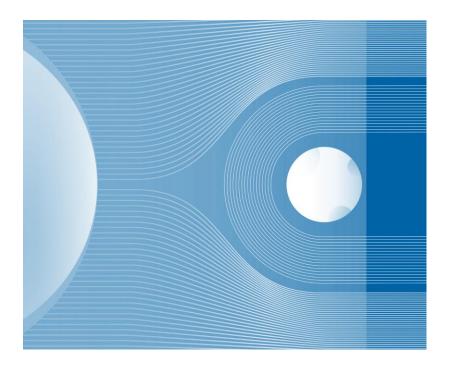


Space Safety and Security Programme \rightarrow envisages heterogenous spacebased system using dedicated platforms, hosted payloads, small satellites

Background **Magnetic field measurements**

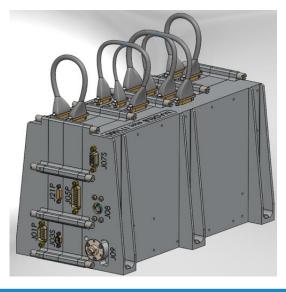
Knowledge of strength and orientation is crucial to understanding and Why? predicting space weather phenomena

How?



Background

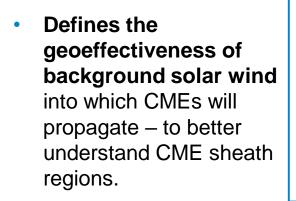
- Fluxgate magnetometer
 MAG on LAGRANGE
- AMR magnetometer
 MAGIC on RADCUBE
- ✓ Conclusions

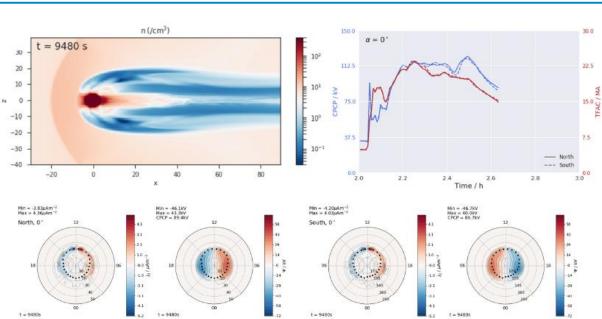


Fluxgate magnetometer Overview

- Dual-sensor fluxgate magnetometer
 - Critical measurement, no overlap
- Heritage from JUICE, MMS and earlier
 - CCSDS compliant SpaceWire interface
- Meets or exceeds the measurement requirements
 - Performance driven by spacecraft magnetic cleanliness

Main Features		
Mass (with margin)	5.8 kg	
Power (with margin)	6.4 W	
Sensor operating temperature	-70°C / +60°C	
Operating range	± 256 nT	
Digital resolution	8 pT	
Noise	<10 pT/√Hz	
Absolute accuracy	±0.5 nT	




Fluxgate Sensors Boom mounted

Fluxgate magnetometer Knowing the magnetic field at L5 ?

- Establishes the geoeffectiveness of large-scale structures in solar wind (e.g. CME, stream interaction regions).
- Allows mapping of energetic particle propagation and connectivity of solar wind back to the corona.
- Enables more accurate data assimilation, crucial element of next generation solar wind and magnetosphere models.

Forecasting SW effects using L5 data \rightarrow Gorgon global magnetosphereionosphere modelling at Imperial College. Credit: J. Eggington, 2019 in prep.

The LAGRANGE mission, credit: ESA

LAGRANGE MAG Requirements \wp

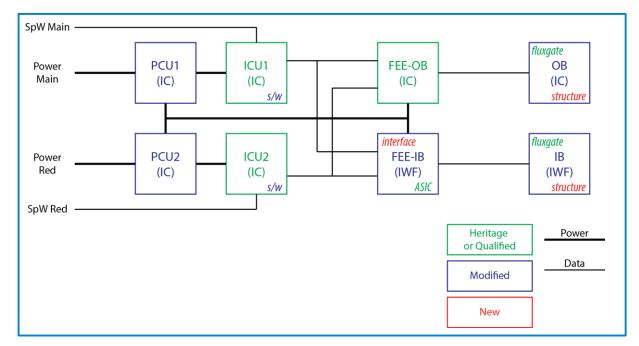
Observation

The MAG shall measure the 3 components of the interplanetary magnetic field (IMF) vector.

The MAG shall have a dynamic range for every component along negative and positive axis from 0.1 to at least 200 nT.

The MAG absolute accuracy shall be $\pm 1 \text{ nT} (\pm 0.5 \text{ nT})$.

The MAG shall measure with a time resolution of 1 second.


Availability

The System shall make the measurements of MAG available with a latency < 13 min (9 min) [NB light travel time from L5 – Earth is 8 minutes].

During routine phase, the average availability of MAG due to planned outages shall be at least 99.96%

LAGRANGE MAG Design development 🔀

Sensors:

OB fluxgate: \checkmark JUICE J-MAG with modification **Imperial College** London

IB fluxgate: MMS \checkmark with modification

PCU JUICE J-MAG with modification J-MAG

FEE **OB: JUICE J-MAG**

IB: MMS with modification

LAGRANGE MAG Design development

Space science

VS

Strong heritage at instrument level for science missions:

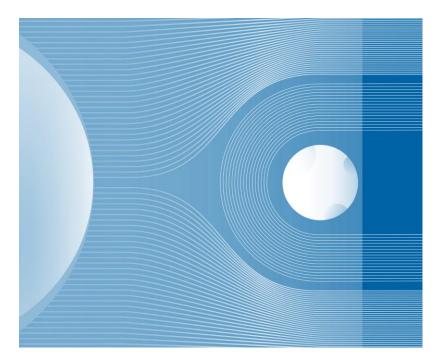
- Relatively low risk and mature well understood designs can be tailored to Lagrange
- Very well-placed to deliver the required measurements

Different requirements:

 They are not a priori easier to meet

Space weather

- Requires sufficiently clean
 magnetic environment
- Product Assurance requirements approach is different potentially requiring more analysis and paperwork compared to a science mission



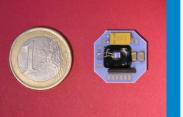
Background

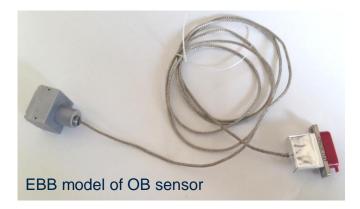
Fluxgate magnetometer
 MAG on LAGRANGE

AMR magnetometer
 MAGIC on RADCUBE

Conclusions

AMR magnetometer Overview \wp


MAGnetometer from Imperial College

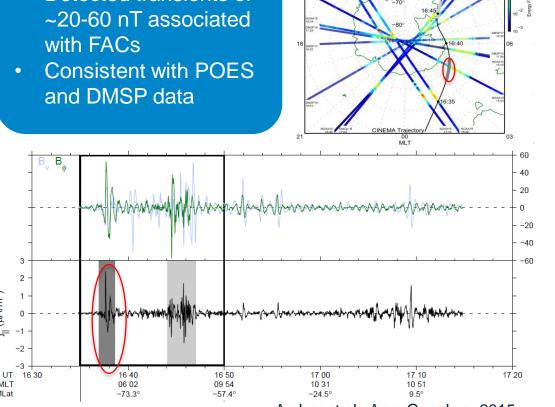

- Anisotropic Magnetoresistive 3-axis DC sensors:
 - In-board (IB) sensor on PCB
 - Out-board (OB) sensor hybrid design
- Main sensor and control loop at TRL 9
- Technical development from heritage design

Main Features	
Volume	Electronics 90x90x1.8 mm ³ Sensor 21x21x11 mm ³
Mass	20 g (Sensor+harness) ~70 g (Electronics)
Power	<0.8 W (12V DC)
Range	± 60 000 nT
Sensitivity	2 nT (calibrated)
Cadence	1 vector/s 10 vectors/s

Main elements:

- Triad MR Honeywell sensors
- Gate driver for flipping pulses
- Non-magnetic capacitor
- Temperature sensor

AMR magnetometer Flight heritage 🚴


- Detected transients of 0 ~20-60 nT associated with FACs
- and DMSP data

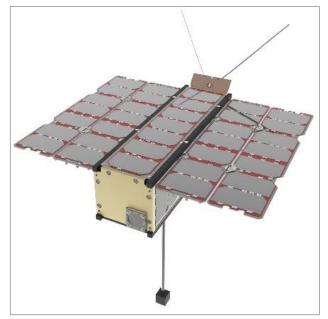
(µA/m²)

_

MLT

MLat

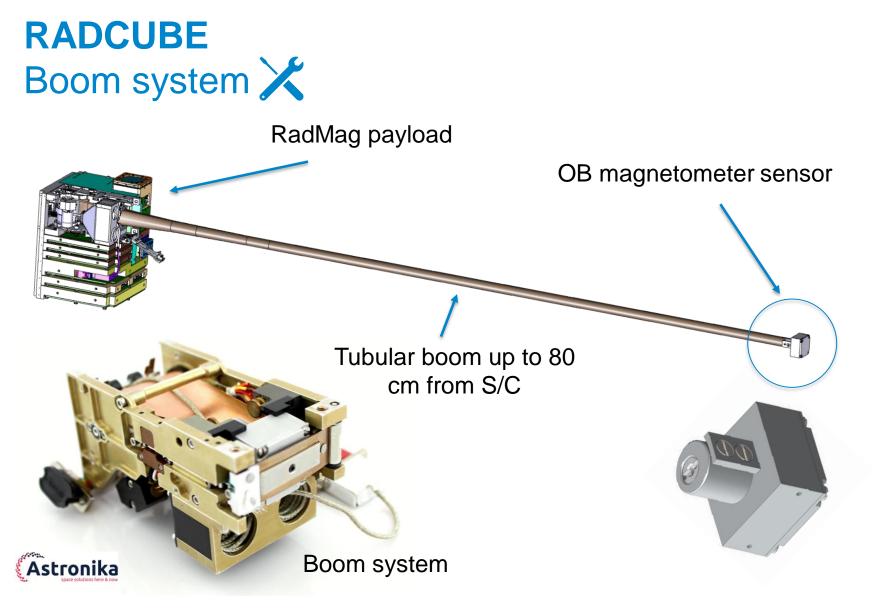
Archer et al., Ann. Geophys. 2015


RADCUBE

Mission overview 🚴

- 3U CubeSat
- MAGIC magnetometer part of RadMag
- Launch planned in 2020
- LEO ~600 km
- Status: EQM building started

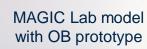
Aim & Objectives


- Demonstrate miniaturised instrument technologies in LEO for space weather monitoring
- MAGIC goal: improve understanding of field aligned currents and ring current during geomagnetically disturbed conditions

The RADCUBE CubeSat

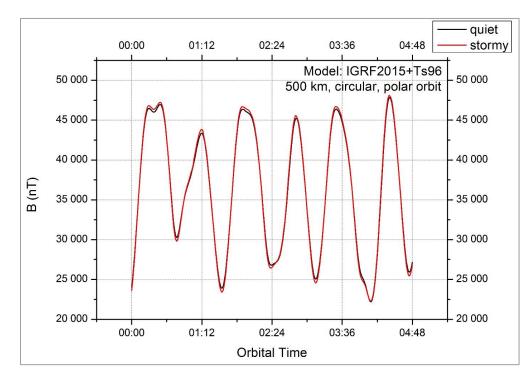
MAGIC on RADCUBE Electronic design 🔀

- Inclusion of intelligence via Atmel \checkmark ATmega128 microprocessor:
 - enabling use of standard communications protocol to bus
 - flexibility in instrument management
- Voltage conditioning via the addition of \checkmark buck converters



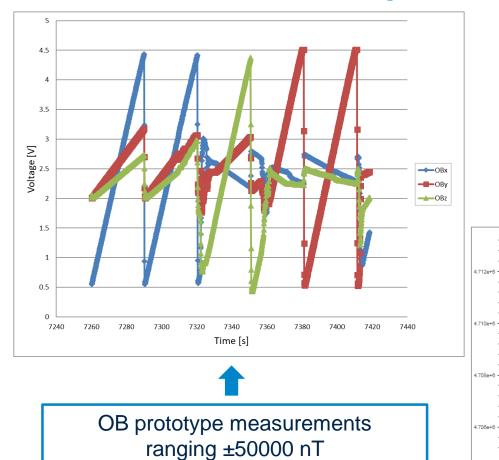
MAGIC EQM:

- **Power electronics**
- Microprocessor & digital circuitry
- ADC •
- IB magnetometer & FEE (3 axes)
- OB FEE (3 axes) •



Magnetic field strength (1-min resolution data) for a few orbital periods for the LEO trajectory in the case of quiet and stormy conditions.

Study of magnetic field expected properties


Effects of a stormy geomagnetic environment: **0-2.5%** changes in average magnetic field strength over spacecraft trajectory, i.e.~**0-1200 nT** dynamic changes

Two different **levels** of field observations applicable:

- 1. Overall mapping
- 2. Field specific region localization, models validation, attitude

MAGIC on RADCUBE Test measurements **····**

9.800e+5

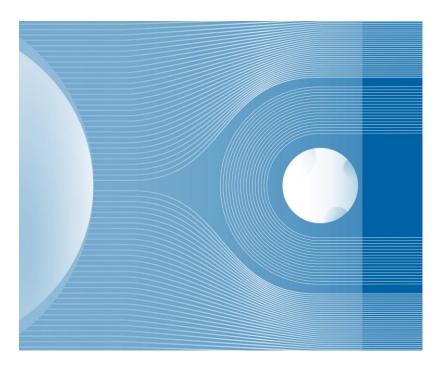
9.900e+5

1.000e+

1.010e+6

1.020e+

OBx



Background

Fluxgate magnetometer
 MAG on LAGRANGE

AMR magnetometer
 MAGIC on RADCUBE

Conclusions

Conclusions /

- In situ magnetic field measurements are mandatory on Lagrange for operational space weather purposes
- Lagrange magnetometer has extremely high heritage and well placed to deliver operational magnetic field measurements
- Future implementation as "**plug and play**" sensor on CubeSats, to be used either in a constellation configuration or as single hosted payload
- Payload for space weather monitoring in the context of ESA D3S + Cooperation! monitoring concept.

Dr. Chiara Palla c.palla@imperial.ac.uk

Thanks for your attention!