Medium Energy Particle Spectrometer (MEPS) for ESA Lagrange Mission

Ali Ravanbakhsh on behalf of the MEPS team

Institute of Experimental and Applied Physics

University of Kiel, Germany

Workshop on Instruments for Distributed Space Weather Sensor System (D3S)

Christian-Albrechts-Universität zu Kiel

Mathematisch-Naturwissenschaftliche Fakultät 23-24 October 2019 ESOC

□ Key observational requirements

□ Instrument concept

Structural and Thermal design baseline

□ Electronic and data interface concept

Demonstration model for thin detectors characterization

Current status

MEPS key observational requirement (1)

• Ions with kinetic energy from 30 kev/nuc up to 8 MeV/nuc.

✓ Space Weather:

 They are abundant and their temporal increase can warn the arrival of a traveling shock

✓ Science:

 These measurements contribute to the important question of how particles are injected and accelerated at interplanetary shocks

MEPS key observational requirement (2)

• Electrons with kinetic energy in the range 30 keV to 0.6 MeV.

✓ Space Weather:

 600 keV electrons travel at a significant fraction of the speed of light. Thus, they give early warning of solar eruptions ("explosions")

✓ Science:

 Electron-rich solar particle events are linked to solar flares in which enormous amounts of energy are released in a short time and these measurements helps better understanding them

MEPS key observational requirement (3)

 Particles: electrons, protons, helium, heavy ions. goal: resolve He3 and He4, C, N and O, Si/Ne, Fe, Ni, plus single a measure for heavier ions for energies larger than 1.5 MeV/nuc.

✓ Space Weather:

 Heavy ions deposit more energy along their tracks through a solid than protons or electrons, so their effect might be larger than their abundance suggests to the space weather. (SEE and secondaries)

✓ Science:

 Heavy ions provide important information about the coronal processes which accelerate particles to high energies.

MEPS instrument concept (1)

MEPS measures and separates electrons and ions using technique similar to STEREO/SEPT and EPT on Solar Orbiter, but adds 3rd detector. **Budgets:**

Mass: max. 3.5kg

Power: max. 5W

Volume: 30x20x20 cm³

Two identical sensors + One Electronic box

MEPS instrument concept (2)

MEPS uses the dE/dx vs. total E method to measure composition.

MEPS structural & thermal design

Design baseline FEM analysis

First natural frequency: 380 Hz Stress MOS: positive

Design baseline Thermal analysis

MEPS GMM in ESATAN Passive Thermal Control

Figure 3-4: MEPS external (left) and internal (right) temperatures for hot operational case.

Figure 3-5: MEPS external (left) and internal (right) temperatures for cold operational case.

MEPS Electrical and data interface concept

• The electronics design is based on SolO heritage.

 SpaceWirewill be usedforthedata interface between the MEPS and the In-Situ DPU.

Characterization of thin front detector

•Using lower energies <1.2 MeV/nuc

Current status end of B1 phase (end of ISRR)

- MEPS design baseline analysis show promising results regarding the mission requirements as well as instrument design requirements.
- > MEPS accommodation is settled with both primes.
- Requirements engineering is in progress.
- MEPS thin detector characterization is in progress.
- The general development seems to be satisfactory considering schedule and cost.

Thank you very much for your attention!

Workshop on Instruments for Distributed Space Weather Sensor System (D3S)

Christian-Albrechts-Universität zu Kiel

Mathematisch-Naturwissenschaftliche Fakultät 23-24 October 2019 ESOC