

Enhanced Performance Low Resource Insitu Sensors for Space Weather

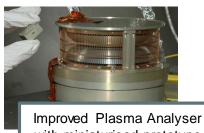
Dhiren Kataria

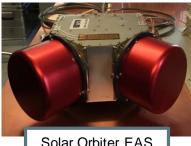
Mullard Space Science Laboratory University College London, UK

Research at MSSL

- Department of Space and Climate Physics, University College London
- Research groups supported by specialist engineers conduct our scientific research:
 - Astrophysics
 - Climate Physics
 - Magnetospheric Physics
 - Planetary Science
 - Solar and Stellar Physics
 - Theory
 - In-situ Detection Systems
 - Photon Detection Systems
 - Imaging
 - Cryogenic Physics

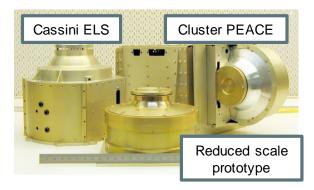
Research at MSSL

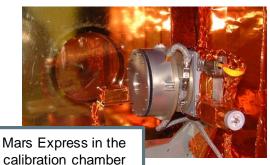

- Department of Space and Climate Physics, University College London
- Research groups supported by specialist engineers conduct our scientific research:
 - Astrophysics
 - Climate Physics
 - Magnetospheric Physics
 - Planetary Science
 - Solar and Stellar Physics
 - Theory
 - In-situ Detection Systems
 - Photon Detection Systems
 - Imaging
 - Cryogenic Physics



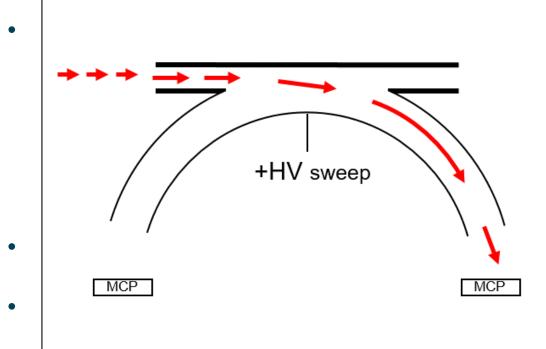
In-situ Instrumentation

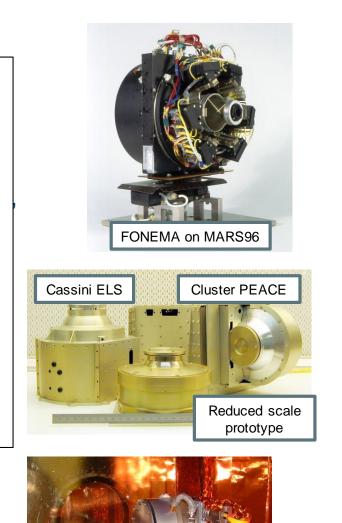
- Strong plasma instrumentation heritage
 - Planetary environments: Cassini, Venus and Mars Express (built by SWRI), Mars 96 (launcher failed), AMPTE-UKS
 - Magnetospheric missions: Cluster, Double Star, Polar, CRRES, STRV, QB50
 - Cometary studies: Giotto
 - Technology Demonstration: TechDemoSat
- Top-hats, with enhanced capabilities
 - Solar Orbiter, SMILE (built by NSSC, China)
- Highly miniaturised particle sensors
 - DISCOVERER, CIRCE

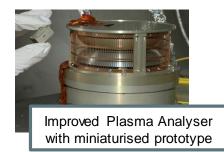


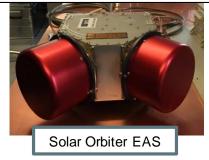

with miniaturised prototype

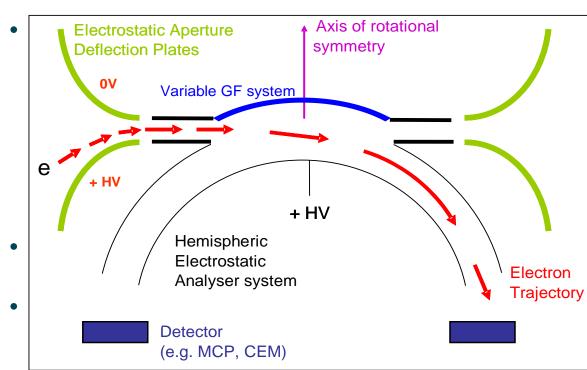
Solar Orbiter EAS

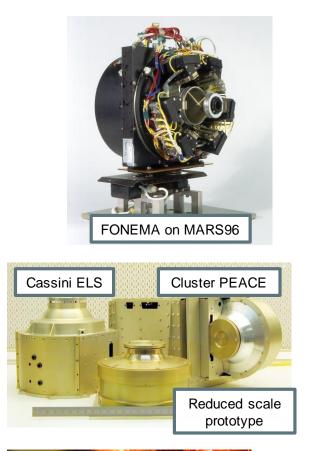


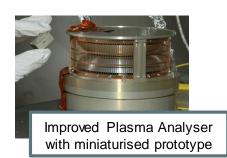


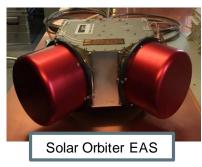



In-situ Instrumentation

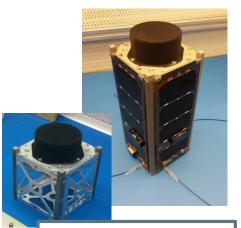

Mars Express in the calibration chamber







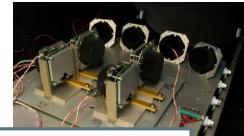
In-situ Instrumentation



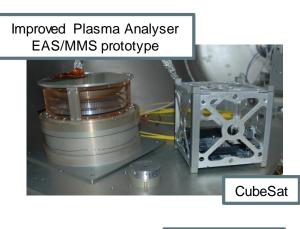
The Future is Small and a bit about CubeSats

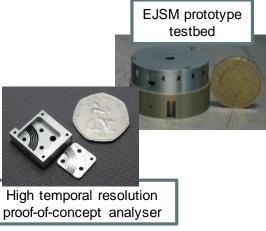
- Honey, I shrunk the satellite
 - Prof. Bob Twiggs Stanford
 - Professor Jordi Puig-Suari CalPoly
- MSSL CubeSat R&D programme initiated in 2008
 - Technology demonstration platform for innovation
 - Science
 - Education and Outreach
- "Small" things at MSSL
 - UCLSat Launched in June 2017
 - Highly miniaturised sensor systems

UCLSat and lon and Neutral Mass Spectrometers for QB50


UCL

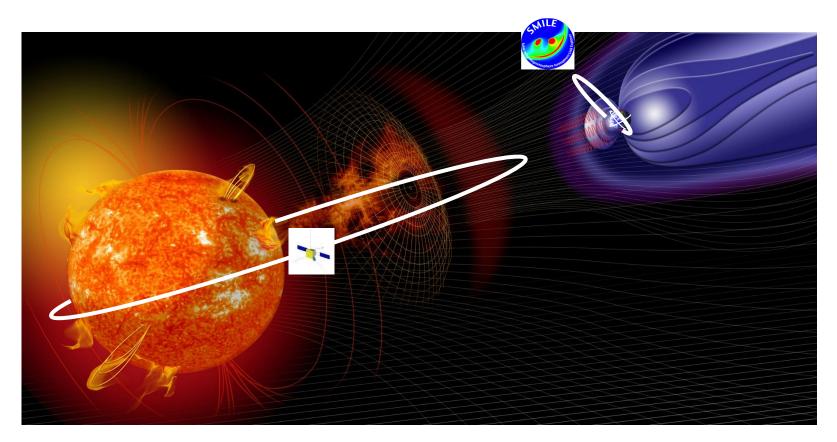
Instrument Miniaturisation


- Driven by CubeSat and Space Weather
- Generic technology development
 - Electronics miniaturisation HV, readout, digital
 - Detection systems combined e-ion
- Alternative geometries to top-hats
 - Cylindrical, Bessel box
- Technology demonstration
 - UK TechDemoSat
 - QB50 mission

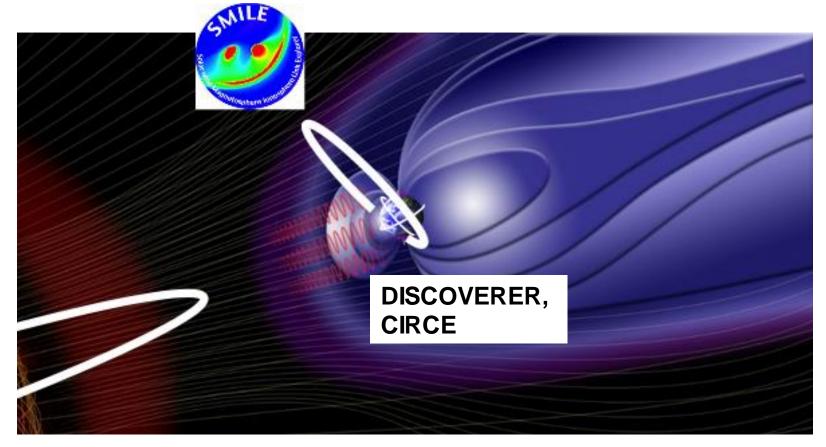


TechDemoSat ChaPS instrument and CAD model

lon and Neutral Mass Spectrometers for QB50



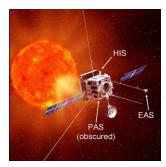
Silicon wafer analyser


Current missions and Space Weather Science "Source to sink"

Background Image credit: NASA

UCL

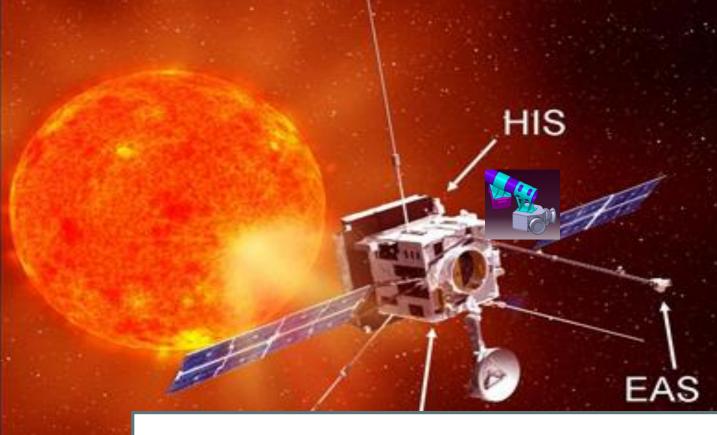
Current missions and Space Weather Science "Source to sink"


Background Image credit: NASA

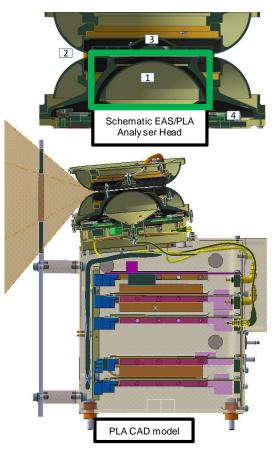
Flight Missions – ESA and Cornerstone

- Solar Orbiter Mission ESA M-class, launch Feb. 2020
 - Solar Wind Analyser (SWA) Suite
- SMILE ESA S-class, launch 2023
 - Solar Wind Light Ion Instrument
- LGR (Phase A/B1 study) ESA SSA
 - Solar Wind Ion Analysers
- Daedalus (Phase 0 study) ESA Earth Observation
 - VLEO <150 km altitude
 - Electron, Ion and Neutral particle Analysers
- JUICE, ESA ESA L-class, launch 2022
 - Detections System for Energetic particle instrument

Solar Orbiter



UNIVERSITY of New Hampshire



Launch February 2020

LGR PLA Overview

- PLA design based largely on EAS tophat design
- EAS to PLA
 - Optics Small change to radius of inner hemisphere
 - Detector sub-system configured for ions (based on heritage)
 - Dual polarity HV, with negative voltage on inner hemisphere (low-risk development of existing single polarity design)
 - HV sweep modulator (based on EAS) with ± 4 kV up from + 2 kV

MSSL In-situ instruments Energy Range table

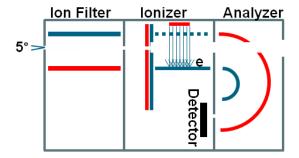
	Energy Range			
Particle species	0.1 – 70 (eV)	0.03-5 (keV)	0.01 – > 30 (keV)	30 – >1000 (keV)
Electrons	ChaPS	EAS, ChaPS	PEACE, ELS, TEA, HOPE-Mbb	SWAN bb
lons	INMS, ChaPS	ChaPS	PLA, HOPE-M bb	SWAN bb
Neutral Atoms	INMS			
Energetic particles				JUICE – JENI, JoEE, SWAN bb

Particle detection systems spreadsheet

Geometry	Top-hat geometry				Bessel box			Cylindrical	
Instrument	Cassini ELS	PEACE LEEA	EAS	PLA	ChaPS- High	ChaPS- Low	HOPE	INMS	INMS- DISC
Particles detected	Electrons	Electrons	Electrons	lons (Electrons)	Electrons	Electrons / lons	lons	lons/ Neutrals	lons/ Neutrals
K Factor	6.14	6.14	6.14	12 (tbd)	60/120	2.4	60	2.8	2.8
Geometric Factor (cm²sreV/eV)	8x10 ⁻⁴	1.6x10 ⁻⁴	8.5x10 ⁻⁵	8.5x10 ⁻⁶	1x10⁻ ⁶	1x10 ⁻⁶	1x10⁻ ⁶	6x10 ⁻⁴	6x10 ⁻⁴
Energy Resolution	0.167	0.128	0.128	0.075	0.3	0.056	0.3	0.06/0.12	0.06/0.12
Energy Acceptance	0.59eV – 26.4KeV	0.59eV – 26.4KeV	0.78eV – 5KeV	50eV – 43KeV	6/12eV – 2/4KeV	0.24 – 67eV	50eV – 43KeV	0.28 – 78eV	0.28 – 230eV
Angular Resolution	5.27° x 20°	2.79° x 15°	2.79° x 11.25°	2-4° x 5°	1.7° x 20°	1.5° x 20°	2° x 22.5°	1.3° x 2.0°	1.3° x 2.0°
Field of View steering	А	S	E	E	-	-	E	Е	Е
Angular Acceptance	5.27° x 160	2.79° x 179.4°	±45° x 360°	±45° x 45°	1.7° x 20°	1.5° x 20°	±11.25° x 60°	1.3° x 7.0°	1.3° x 7.0°

Particle detection systems spreadsheet

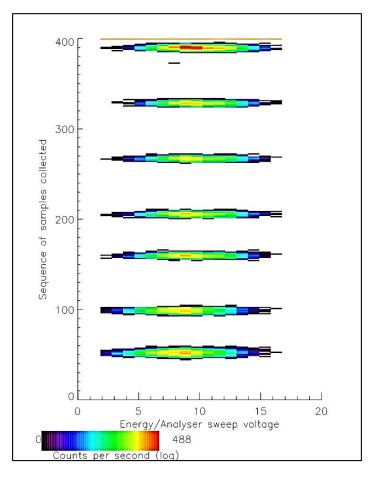
Geometry	Top-hat geometry			Bessel box			Cylindrical		
Instrument	Cassini ELS	PEACE LEEA	EAS	PLA	ChaPS- High	ChaPS- Low	НОРЕ	INMS	INMS- DISC
Mass	1.4 kg	1.9 kg	3.5 kg	2.4 kg	0.85 kg		0.65 kg	0.22 kg	~0.35 kg
Power	2W	2W	3.5W	2.5W	0.95W		1.4W	0.9W	0.9W
Data interface	-	-	Spacewire	Spacewire/ as required	CANbus		As required	RS232	RS232
Accomodation	-	-	Mission dependent	Sun facing/ Mission dependent	-		External to satellite/ Mission dependent	Ram direction	Ram direction
ICD available	-	-	Y	Y			N	Y	Y
TRL	9	9	8	5	9		5	9	5
Breadboard development	-	-	1 year	1 years	-		1-2 years	-	1 year
Flight model development	-	-	2 years	3 years	-		1-2 years mission dependent	6 months	1 year/ Mission dependent



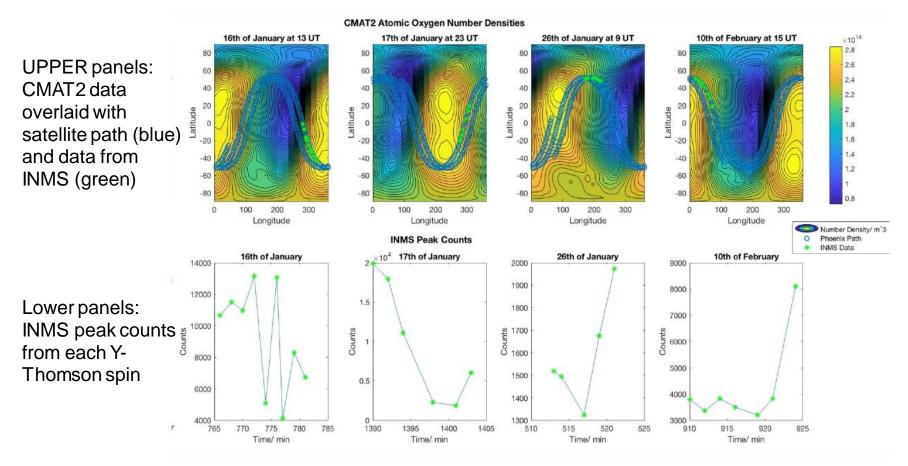
QB50 INMS – Overview

Dhiren Kataria, Alan Smith, Robert Wicks, Ben Taylor, Craig Leff, Rahil Chaudery, Peter Coker, Hubert Hu, Mark Hailey, Andy Malpuss, Duncan Rust

- Ion and Neutral Mass Spectrometer
 - Alternate pino-pong between ions and neutral particles
- Measure density of dominant species
 O, O₂, N₂, NO
- 220 gms, 0.3U
- 28 (ISS) + 6 (PSLV) satellites launched in mid-2017
- MSSL built 11 INMS sensors

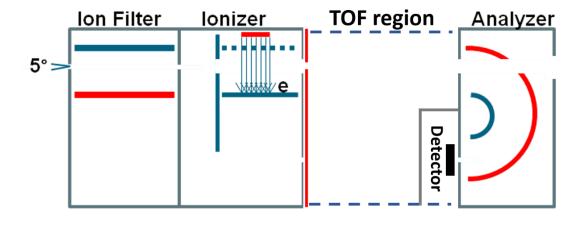


Data from Phoenix (Taiwan)


- Satellite in Y-Thomson spin
 - Particles enter aperture when instrument faces spacecraft ram direction measured only
- Data from 16th January 2018
 - Instrument set for O+
 - X-axis Voltage (Energy)
 - Y-axis Time

Comparison with CMAT2 –

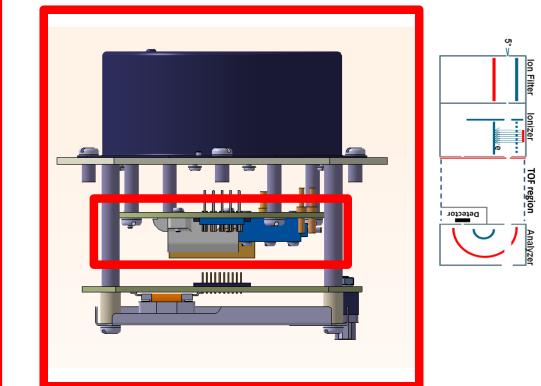
Data taken in conjunction with January 2018 World Radar Day



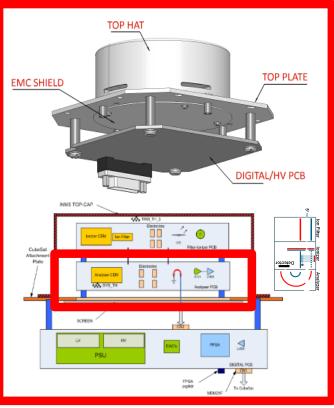
D3S Workshop, ESOC, Darmstadt, 24th October, 2019

Anna Apsit, Masters thesis, 2018

DISCOVERER



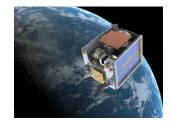
- INMS for SOAR
 - Satellite for Orbital Aerodynamics Research
 - Time-of-flight
 - In-flight velocity measurement
 - Needs high resolution position knowledge
- INMS for wind tunnel
 - Largely identical to SOAR INMS
 - Design iterations for milli-eV measurements

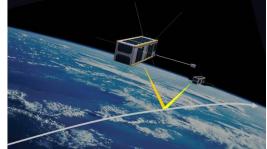


DISCOVERER

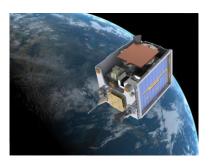
DISCOVERER design Red-boxed section shifted down to provide 40 mm time-of-flight length

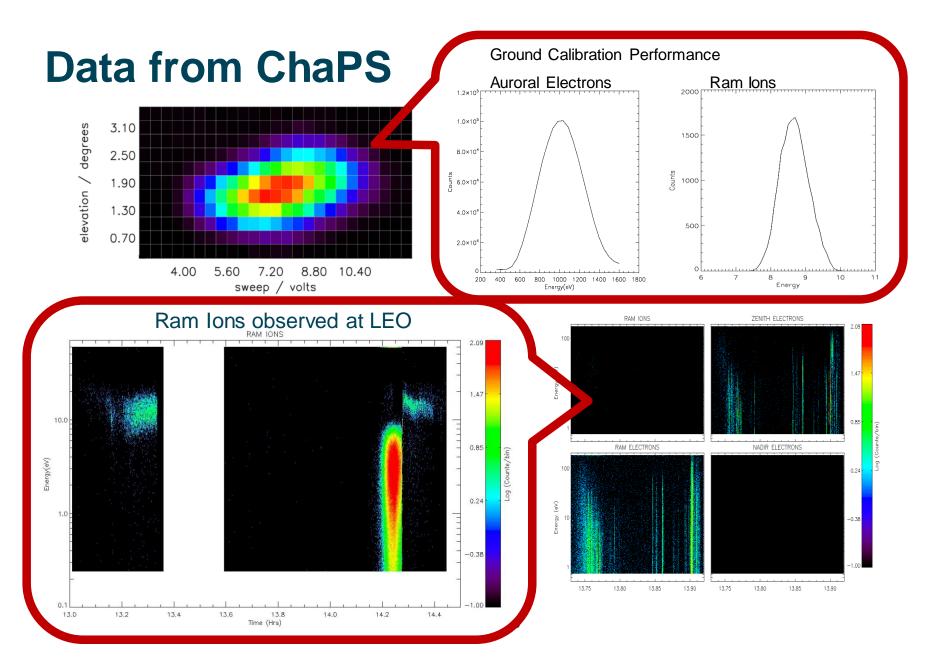
QB50 design




Flight Missions – CubeSat and TechDemo

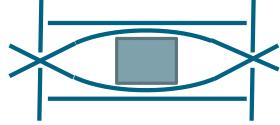
- TechDemoSat Mission, UK launched 26th June, 2014
 - Technology Demonstration mission
 - Charged Particle Spectrometer (ChaPS)
- QB50 Mission, EU FP7, launched May/June 2017
 - Ion and Neutral Mass Spectrometer (INMS)
 - UCLSat-2U CubeSat
- CIRCE UK, launch January 2020
 - 2 6U CubeSats, 1 QB50 INMS unit on each
- DISCOVERER EU H2020, launch Aug. 2020
 3U CubeSat, INMS with enhanced capabilities

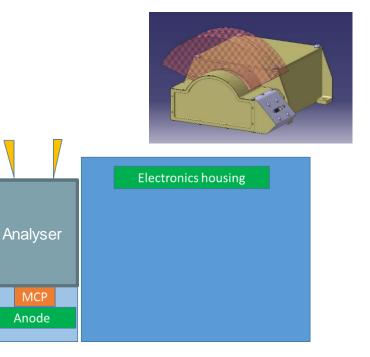




ChaPS – Overview PI: Dhiren Kataria

- ChaPS (Charged Particle Spectrometer)
 - Suite of miniaturised Bessel Boxes
 - Electron and ion analysis
- Three modes
 - Zenith-Nadir Electrons in the auroral regions
 - Photo-electrons in the tehrmosphere
 - Ram ions in the thermosphere
- Delivered March 2012
- Launched July 2014


Hot Plasma Environment Monitor (HOPE-M) ESA Phase A/B breadboard development contract


- Requirements
 - Telecoms satellites at GEO
 - Surface charging monitor, post-anamoly data
 - Combined electrons and ions
 - 30 eV 30 keV
 - Low resource: 0.5 kg
 - Compact digital electronics
 - Complex capabilities, rad hard memory
 - >10 year lifetime

UCL

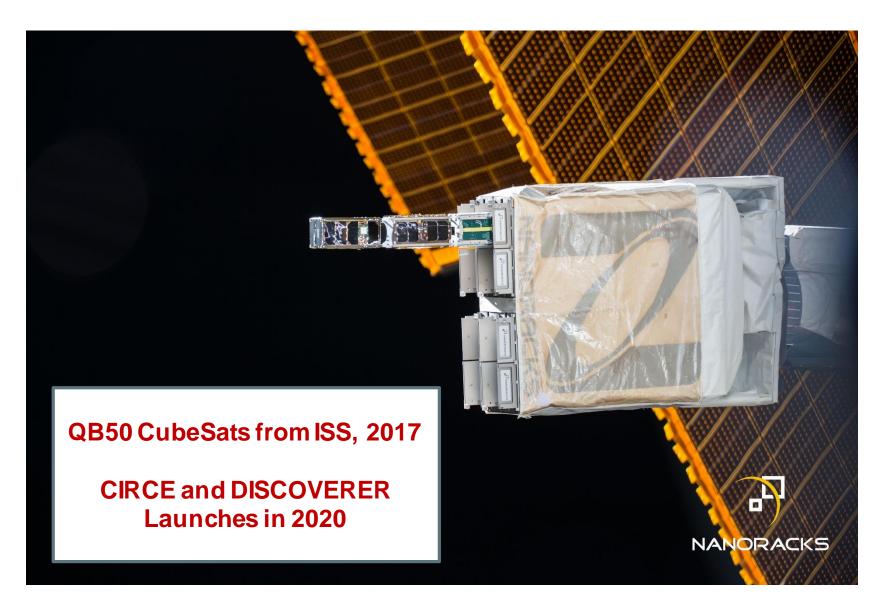
Hot Plasma Environment Monitor (HOPE-M) Design overview

- 2 x Bessel box variants
 - Compact geometry
 - Considerable design flexibility
 - Ability to "tune" performance
 - High/low analyser constants
 - Used on STRV
- $\pm 22^{\circ} \times \pm 60^{\circ}$ Field of view
- Modular design
 - Analyser head, electronics box

Hot Plasma Environment Monitor (HOPE-M) Current status

- Phase A/B completed. Final report submitted February 2016
- Light leak issues remain to be resolved. Design changes implemented. Currently awaiting internal resources
- Requires ASIC development for 0.5 kg
- 0.65 kg without ASIC
- Attractive package for NanoSat missions, particularly CubeSats

In-situ Detection systems Group


Research Dhiren Kataria Gethyn Lewis

Missions support Andrew Malpuss Theophile Brochant De Villiers

PhD students Hubert Hu – part time

Large project teams Engineers, driven by requirements from plasma, planetary Scientists. Typical teams of 15-30 people

• Thank you