





# multi-Needle Langmuir Probe invented for space weather satellites

Jøran Moen University of Oslo & Tore Andre Bekkeng Eidsvoll Electronics AS Lasse Clausen, University of Oslo & Espen Trondsen, University of Oslo

D3S : ESOC 23.10.2019







#### Plasma irregularities and ionospheric scintillations







Global morphology of ionospheric scintillation (after Basu and Groves, 2001)

$$\widetilde{\sigma_{\phi}} = \sqrt{<\phi^2> - <\phi>^2},$$

$$S_4^2 = \frac{(< I^2 > - < I >^2}{< I >^2}$$

Infrequent







### Swarm A Ne-measurements

Animation: Yaqi Jin





## GPS disturbances at high latitudes



The strongest GPS-scintillations occur when plasma clouds enter the polar cap through the auroral oval on the dayside, and exits the polar cap through the auroral oval on the nightside.

Animation: Clausen et al., JGR, doi: 10.1002/2015JA022199, 2016





# m-NLP: What is it?

Developed as a part of the ICI sounding rocket program (University of Oslo, 4DSpace Initiative)



Parameters: electron density and spacecraft floating potential down to meter scale

Low-cost UiO-version onboard NORSAT-1 satellite, launched on 14 July 2017.







## M-NLP measurement principle





Figure: UiO



## **NORSAT-1**









# Key numbers

| Parameter                                           | Min             | Nom        | Max              | Unit            |  |
|-----------------------------------------------------|-----------------|------------|------------------|-----------------|--|
| Power Input                                         |                 |            |                  |                 |  |
| Input voltage                                       | 22              | 28         | 38               | V               |  |
| Input power, normal operation                       | 4.5             | 4.65       | 5.1              | W               |  |
| Input power, boom deployment (nominally 25 ms)      | 16              | -          | 43               | W               |  |
| Electical Interfaces                                |                 |            |                  |                 |  |
| RS422 baud rate                                     | 19 200          | 460 800    | 921 600          | bps             |  |
| Electron density range                              | 10 <sup>8</sup> | -          | 10 <sup>12</sup> | m <sup>-3</sup> |  |
| Mechanical weights and dimensions                   |                 |            |                  |                 |  |
| Mass of electronic unit                             | -               | 0.813      | -                | kg              |  |
| Total mass of boom system (two cassettes)           | -               | 0.676      | -                | kg              |  |
| Mass of harness (belonging to electronics unit)     | -               | 0.265      | -                | kg              |  |
| Mass of harness (belonging to two boom systems)     | -               | 0.400      | -                | kg              |  |
| Electronic unit dimensions (W x H x D)              | -               | 122x61x109 | -                | mm              |  |
| Boom dimensions, deployed (W x H x D)               | -               | 400x384x65 | -                | mm              |  |
| Harness lengths                                     | -               | 1.5        | -                | m               |  |
| Operational Environment                             |                 |            |                  |                 |  |
| Electronics unit temperature, operational           | -30             | -          | 55               | °C              |  |
| Electronics unit temperature, non-operational       | -40             | -          | 60               | °C              |  |
| Boom system pre-deployment                          | -50             | _          | 60               | °C              |  |
| Boom system deployment                              | -50             | -          | 60               | °C              |  |
| Boom system post-deployment                         | -50             | -          | 60               | °C              |  |
| Spacecraft floating potential wrt. plasma potential | -7.5            | -          | +7.5             | V               |  |





## Key aspects



On-board storage for > 24 hours of processed density and potential data at the highest sampling rate

#### Radiation tolerant up to >50 krad

#### Examples of data rates for different operational modes:

| Mode           | Sample rate |            |             |
|----------------|-------------|------------|-------------|
|                | 100 Hz      | 1 kHz      | 5 kHz       |
| Processed data | 1 619 bps   | 16 185 bps | 80 926 bps  |
| RAW data       | 6 462 bps   | 64 616 bps | 323 083 bps |

Accumulated data per orbit (800 km altitude, 1h 41min orbit time):

| Mode           | Sample rate |         |          |
|----------------|-------------|---------|----------|
|                | 100 Hz      | 1 kHz   | 5 kHz    |
| Processed data | 1.17 MB     | 11.7 MB | 58.5 MB  |
| RAW data       | 4.67 MB     | 46.7 MB | 233.4 MB |

TRL - 7



#### Flight Heritage

| Mission name       | Launch date and site                             | Mission type                             |
|--------------------|--------------------------------------------------|------------------------------------------|
| ICI-2              | December 2008, Svalrak Launch Facility, Svalbard | Sounding rocket, 350 km apogee           |
| ECOMA 7, 8 and 9   | December 2010, Andøya Space Centre, Norway       | Sounding rockets, 135 km apogee          |
| ICI-3              | December 2011, Svalrak Launch Facility, Svalbard | Sounding rocket, 350 km apogee           |
| NASA 36.273 MICA   | February 2012, Poker Flat Research Range, Alaska | Sounding rocket, 350 km apogee           |
| ICI-4              | February 2015, Andøya Space Centre, Norway       | Sounding rocket, 350 km apogee           |
| Maxidusty 1 and 1b | June/July 2016, Andøya Space Centre, Norway      | Sounding rocket, 135 km apogee           |
| NORSAT-1           | July 2017, Baikonur Cosmodrome, Kazakhstan       | Satellite, 586 x 608 km, 97.61°          |
| NASA VISIONS-2     | December 2018. Svalrak Launch Facility, Svalbard | Sounding Rocket, 600 km apogee           |
| NASA TRICE-2       | December 2018, Andøya Space Centre, Norway       | Sounding Rocket, 755 km & 1040 km apogee |
| CAPER-2            | January 2019, Andøya Space Centre, Norway        | Sounding Rocket, 774 km apogee           |



#### EIDEL EIDSVOLL ELECTRONICS AS

# Orbital considerations and instrument accommodation

- Preferred orbital height is 350 to 800 km
- Probes preferentially placed in the same orientation w.r.t. the magnetic field
- Boom system should be mounted to avoid wake regions
- Probe potential needs to be above the space craft potential -









## NorSat-1 measurements





## NorSat-1 measurements





## NorSat-1 measurements





## For GNSS Space weather services:

## Key prameters:

- Electron density/gradients (Ne- meter-scale)
- Magnetic field (B-few nT)



## Nice to have:

GNNS Scintillation/TEC Auroral imager (oval) Plasma Flow (Vi) 10eV-10 keV Electrons



Jin et al., JGR, 2019



## **Operational forecast**



4DSpace group at UiO : Proto-typing space weather forecast model for GNSS signal integrity in the European Arctic Sector

#### This model will need data input

D3S should do in flight data processing and transmit space weather parameter inputs to running models



## Future prospects

- The m-NLP Instrument is currently a part of the ESA SSA D3S study
- On-ground forecasting services for radio communication / GNSS signal integrity and availability are being researched and developed
- Develop onboard processing capabilities for indices and parameter inputs to space weather models



