A New Network Paradigm for the On-board Reference Architecture (OSRA-NET)

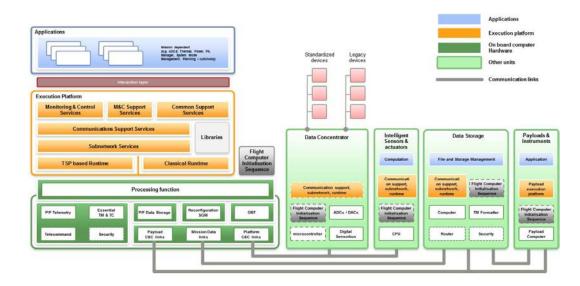
Brice Dellandrea

ADCSS - 12/11/2019 - ESTEC



Outline

- SAVOIR and SAVOIR-FAIRE
- Soals of the OSRA-NET Study
- Study organisation & major outcomes
- Secus on the OSRA-NET Requirements Specification

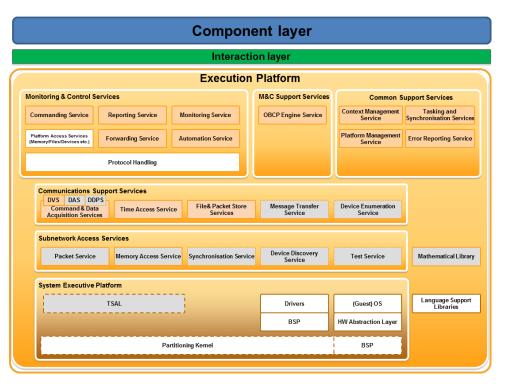


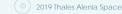
SAVOIR Avionics System Reference Architecture (ASRA)

- Reference avionics architecture (HW + SW vision)
 - Addressing the full platform avionics perimeter
 - Payload C/C, Data Storage, Telemetry, Routing and Security
- Stays as agnostic as possible w.r.t. technology and implementation choices
 - "Functional Reference Architecture"

3

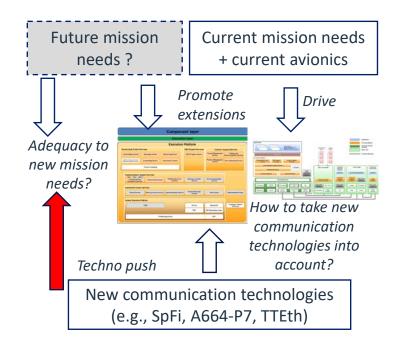
Yet mapping to current reference implementation technologies are provided and discussed (e.g., 1553, SpW, CAN)





SAVOIR On-board Reference Architecture (OSRA)

- Proposes a reference organisation of platform SW architecture in 3 layers
 - Component layer
 - Sofor Mission-specific software
 - Secution platform
 - Services For Mission-independent software (e.g., generic services)
 - SOriented to re-use
 - Interaction layer
 - Solution platform
 - SAutomatically generated
- Comes with an associated Model-Driven Engineering process
 - Semi-formal modeling of SW architecture design
 - Increased abstraction of design + precise SW / SW interface definition
 - Automated code generation
- Supports both "Classical" and Time and Space partitioning execution platform


Assessment of communication technologies

🛰 Status today

- Several technologies (UART / 1553 / CAN / SpW / Wizardlink / //LVDS) are available for flight
- Strong techno push of new communication technologies (e.g., SpaceFibre, TTEthernet, TSN)
 - They require possible extensions of standards, methodologies, development practices and reference architectures (at avionics and software level)
 - Albeit they promise interesting advantages, what are the needs these technologies respond to? How is their design driven?

SThose communication technologies are part of a system

- How to ensure that new communication technology developments are driven so as to best respond to the right mission needs?
- Now to ensure that the SAVOIR reference architectures can take into account these new needs, possibly by leveraging on new communication technologies?

Ref.:

5

Goals of the OSRA-NET study

To extend the concept of On-board Software Reference Architecture (OSRA) to new communication paradigms emerged in the past few years

- Such as those promoted by SpaceFibre, ARINC 664 Part 7, TTEthernet, SpW-D, STP-ISS, TSN
- **S**To enable the implementation of a multi-node On-Board Software Reference Architecture (OSRA-NET)

Salary To perform an impact analysis on all relevant SAVOIR and CCSDS documents

Sative major areas of work have been performed

- Sa The specification of the high-level communication system requirements for the OSRA
- The definition of an extended OSRA methodology and process for the analysis of communication needs
 - So as to confirm the feasibility of an architecture design spread on multiple nodes
 - Sto possibly refine such architectural design into OSRA components
 - Sector perform automated code generation and implementation

To prototype an implementation of the new OSRA-NET methodology and of a suitable communication stack on spaceborne hardware

- Sextension of reference OSRA Toolchain
- Secution of a case study demonstration of the new approach

Overview of the OSRA-NET TRP Study

- * The main R&D study (TRP) started in December 2015 and concluded in December 2017;
 - 🛰 Analysis phase
 - SAVOIR, ECSS, CCSDS standards
 - Methodology definition
 - Demonstrator technology selection
 - Case study preliminary definition
 - Specification phase

- Specification of OSRA-NET communication requirements
- Sumpact analysis on existing standards
- Consolidated Case Study
- Semonstrator implementation and case study execution
 - SOSRA toolchain extension for OSRA-NET
 - Sumplementation of prototype OSRA-NET communication stack
 - Suntegration of communication stack into OSRA toolchain / TASTE
 - Scase study modeling, implementation and execution
 - Sextension of case study results to full-scale spacecraft

2018-2019: review process with SAVOIR and the SpW/SpFi Working Group and release of SAVOIR-GS-008: SAVOIR Onboard Communication System Requirement Document

Study Organisation

SESA

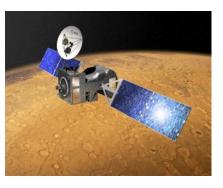
SWE
SWE
SWE

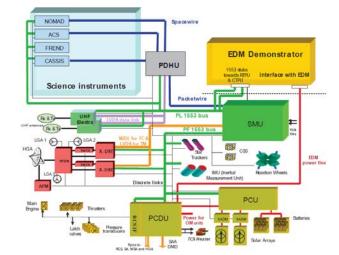
SThales Alenia Space in France (Study Prime)

- SAnalysis Phase Leader
- Process and Methodology Definition
- Scase Study Definition Leader
- OSRA-NET Communication Requirements Specification
- SImpact Analysis Leader
- S.Demonstrator and case study Support
 - Extensions of the OSRA Component model (SCM)
 - Extension of case study results to full-scale spacecraft avionics

GMV

- SAnalysis Phase Support
- Case study definition Support
- Impact Analysis Support for OSRArelated standards
- S.Demonstrator and case study Leader
 - Extension of OSRA Component model editor and SCM to TASTE transformation
 - Integrated communication and middleware architecture (with TASTE)
 - Scase study execution
- 🔊 Teletel
 - Sechnology selection Support
 - Implementation of prototype OSRA-NET communication stack
- Subright Ascension
 - Analysis phase and Impact Analysis Support for SOIS, MOS, CCSDS recommended practices

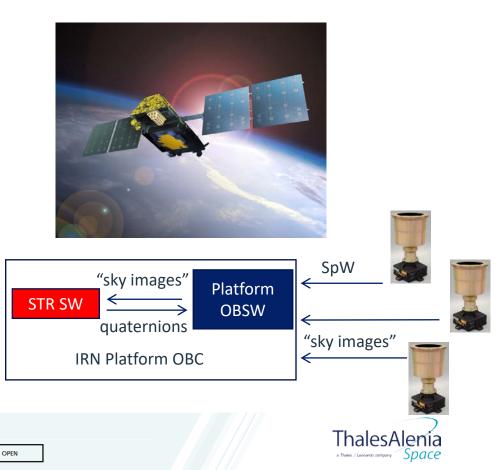

8


© 2019 Thales Alenia Space

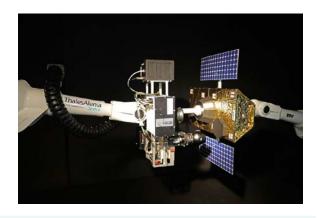
- Goal: to analyse the communication needs for current and future Command / Control and Science on-board communications
 - Understand the real "application" needs
 - Understand what needs have been "artificially" modified because of the adopted technologies
 - (e.g., traffic on 1553 forced on a given time schedule)

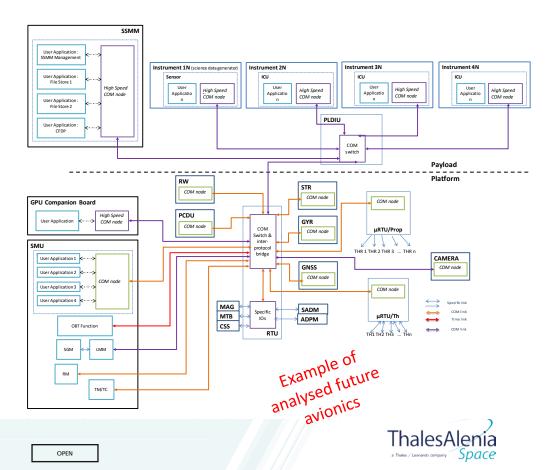
2019 Thales Alenia Space

Exomars TGO used as example of current operational avionics



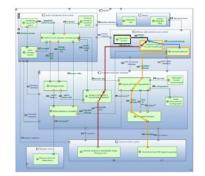
9




- Star Tracker SW processing on Platform On-Board Computer taken into account in the analysis
 - By using Iridium Next as example of operational avionics
 - Each Leonardo STR Optical Head transmits "sky images" over Spacewire point-to-point links to the Platform On-Board Computer

2019 Thales Alenia Space

- Analysis extended with needs for future missions for command/control & data transfer in real-time for:
 - Science
 - Earth Observation
 - Exploration missions
 - Servicing missions



) 2019 Thales Alenia Space

OSRA-NET methodology

OBSW modeling

System / Avionics modeling

- SModeling languages such as Capella or SysML
- Soal: Enable Coarse-grained communication analysis

Soriented to

- Section Preliminary communication sizing
- Avionics system feasibility
- Second Se
 - Severaging on e.g., the OSRA component model
 - Soal: Enable Fine-grained communication analysis
 - Capitalise on avionics modeling effort => coherent model transformation is required
 - Sefinement of communications with knowledge of
 - Scommunication patterns used at OBSW level

S.E.g., send, request / response, etc...

- Soverhead due to full communication protocol stack
 - Hardware Comm Protocol + SW comm protocols + software real-time architecture

12

- The analysis permitted to extract expected communication needs for devices of future avionics architectures
 - Sected min-max message size
 - Service Frequency
 - 🛰 Max Jitter / Latency
 - Need for timestamp
 - SFDIR/network monitoring requirements

1			Mar Courses	Frequency (Hz)	Period (ms)	bit rate	AOCS sensitivity	Jitte requirement		Latency (ms)					Proposed Class
	Equipment	Distatype	(bits)					Value (ms)	ROM	Value (ms)	ROM	Other requirements	QoS level	Time stamp (8 octets)	of Comm
	Magnetometers	AOCS	12	8	125	5 100 bits/s	>1cycle	1000	1 cycle	1000	1 cycle	order of mig		No	- 2
	Coarse Sun Sensors	AOCS	96	8	125,00	770 bits/s	LOW	10	1 cycle	10	1 cycle	order of mag		No	2
	Gyro (Coarse/safe mode)	AOCS	576	8	125,00	0 4,6kbits/s	1 cycle	2	1 cycle	2	1 cycle	order of msg		No	
	Gyro (fine-grained)	AQCS	\$76	32	31,25	s 18kbits/s	1 cycle	2	< 1 Cycle		<1 Cycle			Yes	8
	Gyro (future)	AOCS	576	32	31, 25	5 18kbits/s	1 cycle	2	< 1 Čycle	1	l<1 Cycle			TBD	8
	Star-Tracker (Smart)	AOCS	8194 - 32777	8	125,00	65 to 262 kbits/s	1 cycle	1	< 1 Cycle	10	1 cycle			Yes	2
	Star-Tracker (Smart)	AOCS- Geo	8194 - 32777	8	125,00	65 to 262 kbits/s	>1 cycle	2	1 cycle	10	>1 cycle			180	2
	Star-Tracker	AOCS- Agility	8194 - 32777	30	33, 33	3 245 to 983 kbits/s	<< 1Cycle	0	<<1Cycle		<1 Cycle			Yes	5
Such	Camera-High Res.	AOCS - Rendez-vous	41943040	8	125.00	335 Mbits/s	1 cycle	30	<10ycle	100	locie	3		Yes	(5)
Sc	Camera	AOCS-Nav. Cam	10485760	8	125,00	0 84 Mbits/s	>1cycle	100	>1cyde	100	>1 cycle			Yes	4
	Camera	AOCS - Multi stage (1kHz)	1000000	1000	1.00	1000 Mbits/s	>1 cycle	100		100	2			Yes	5
	IR Spectrum Camera	AOCS	2457600	1	1000.00	2.5 Mbits/s	>1 cycle	100	· · · ·	100	2			Yes	
			Mession	100		Masion		Mission		Mission				TBD	5
	Payload sensors Tachometer	Various - closed loop AOCS	dependiant 30720	8	10,00		<<1Cycle >1cycle	dependent 10	>1cycle		<1Cycle >1cycle			No	3
	Tachometer	AOCS - Agility Multi stage	formerscomp could long ratio: that actual value	100	10,00	780	1 cycle	1	<1 Cycle		<1 Cycle		1	Yes	5
	GN65	AOCS	10000	1	1000,00	0 10 kbits/s	1 cycle	10	1 Cycle	10	1 Cycle			Yes	1
	0.03	AOCS	14	1	1000,00	0 10 kbits/s	1 cycle	0,001	<<1Cycle	0,003	L<<1 Cycle			Yes	1
	Magneto-Torquer Bars	AOCS	12	0.125	8000.00	neglectable	1 cycle	500	<1Cycle	8000	1 cycle		1 or 2	No	1
	Thrusters (x28)	ACOS	2800	8	125,00	0 22kbits/s	<1 cycle	Mission dependant		Mission dependent			1 or 2	No	
2	Thrusters - chemical	ACOS	2800	256	3,90	720kbits/s	<1 cycle	0,1	<1 Cycle	0,1	<1Cyde	nolos	2	TBD	5
ting of	Thrusters-electrical	ACOS		No ha	d constraint	ts due to propulsion o	ydes: sever	al minutes and	the imapct on	trajectory is not im	mediate		1 or 2	TBD	1
Ad	Reaction Wheels	AOCS	30720	8	125,00	0 250kbits/s	1 cycle	10,00	<1 Čycie	10,00	1 cyck		1 or 2	Yes for some	2
	Reaction Wheels (high speed)	AOCS+Agility	30720	100	10,00	0 3 Mbits/s	1 cycle	0,50	<1 Čycie	1,00	<1 Čyck	No Loss of msg End of process in same cycle	2	TBD	5
Payroad	for the second se	Grianen	2.005+08		100.00	2020 Million for		21/2					0.44.1	No	
	Spedrometer	Science		20				N/A		N/A	N/A		0 or 1	No	
	UltraHDCamera(4K)	Science	9,958+07	20	100,00	0 1000 Mbits/s	N/A	N/A	N/A	14/A	N/A	-	Oor 1	No	4
	X Ray detector	Science	1,805+10	0,0305	33008,30	545 Mbits/s	N/A	N/A	N/A	N/A	N/A		0 or 1	No	4

Communication Classes

Class 1: Low frequency, small / medium data size, non time critical
 E.g., low-rate AOCS sensors, thermal, payload HK

- Class 2: Medium frequency, Medium data size, time critical, medium QoS
 E.g., STR, GNSS, occasional data losses can be tolerated
- Seclass 3: Medium frequency, Medium data size, time critical, high QoS
 - Section: A ctuators, especially with spacecraft safety consequences
- Class 4: Low frequency, Big data size, non time critical Sec.g., science TM
- Class 5: High frequency, Medium data size, time critical, medium QoS
 E.g., future high-rate sensors / actuators (e.g., RW, CMG)
- Sclass 6: Medium frequency, Big data size, time critical, medium QoS
 - SE.g., Navigation Cameras
- Sclass 7: Medium frequency, Small data size, time critical, low jitter
 - SE.g., Application / Network Synchronisation

14

OSRA-NET Communication System Requirement Specification

- Provides generic requirements related to the communication needs for avionics systems currently under development and that could be foreseen in future missions
- It can therefore be considered as a common-core of requirements that is expected to be relevant to a sizeable range of future missions

Addresses

- Capability requirements (Communication needs requirements, QoS)
- Communication infrastructure requirements
- Serror handling and FDIR
- System-level communication requirements
- Seviewed at study level and separately by SAVOIR-UNION Working Group
- Setting the attention of the space community
 - Se.g., mapping to SpaceFibre performed by ESA / University of Pisa, ADCSS 2017, 28th, 30th & 31st SpaceWire Working Group, DASIA 2018, ...

Salariansformed in a SAVOIR document: GS-008

ESI UNCLESSIFIED - For Official Use

estec
Range on Space Research
and Technology Centry
Keplerisen (
2231.12 Noordwij The Natherland
T -31 (2)71 565 656
C

DOCUMENT

SAVOIR On-board Communication System Requirement Document

Preparek by SAYOIR Reference SAYOIR-GS-ooB Ierze 1 Reviden 0 Date of Ierze 06/08/2019 Status Rakasead Document Typ Generic Specification Distribution ESA Mamber Status

> European Space Agency Agence spatiale europeenne

OSRA-NET new content?

Sefinitions for communication systems

Determinism, latency, jitter, class of communication, redundancy schemes, quality of service a FDIR

Serminology aligned with SpaceWire world!

Clarifies the system dependancy of communication properties between the communication system and the host systems

Minor rework on the classes of communication with a synthetic table:

- i	No	de 1			Co	Communication Network					
Host System 1		End-point 1M									
Application 1	>	Network			No. 4 - 2 (m/h-h)	וו	No. do. A (constants)				
Application 2	ł	Data link	-		Node 3 (switch)		Node 4 (switch)				
Application N	>	Physical	_		Port 1K		Configuration node				
				Í	Network		> Management:				
	_		_		Data link		Configuration Guardian/ Monitoring/				
	No	de 2	-		<- Physical		> Switching				
Host System 2		End-point 1J	<								
Application 1	>	Network									
Application 2		Data link									
Application N		Physical									

	Freq o exchange	QoS		Data Rate scale		Jitter	Latence	Level of determism		Timestamp			
Class	Min	Max	0	1	2	Min	Max	ms	ms	None	guaranteed bounded latency	deterministic	Mandatory / Optional
1	0,1	1	х	х		100 bits/s	10 kbits/s	10	10		х		Optional
2-a	4	32		х	х		1 Mbits /s	5-10	10			x	Optional
2-b	4	32		х	х		1 Mbits /s	5-10	10		х		Mandatory
3	8	10			х		250 kbits /s	5	10			х	Optional
4	0,1	1	х	х		100 Mbits/s		up to 100	up to 100	х	х		Optional
5-a	10	1000		х	х		3 Mbits/s	0,5-1	0,5			х	Optional
5-b	10	1000		х	х		3 Mbits/s	0,5-1	0,5		х		Mandatory
6	1	10		х	х	100 Mbits/s		2	10			х	Mandatory
7	1	10	х	х		100 bits/s	1 kbits/s	1	2			х	Optional

GS-008: more than 100 RIDS processed

All requirements come with a rationale

Many requirements have been reworked to be agnostic of the technology (compatible with busses or networks)

Acknowledgement process (ACK/NACK/Silence)

📽 Clarifications on the QoS section (classes)

Sclarification on the error reports for FDIR & network monitoring

Nansactions verification in QoS 1 & 2

🛰 Bandwisdth usage, communication health status, node status

OPEN

🛰 Repeated data link errors (number vs threshold)

Sata integrity check

17

Nissing packets detection, duplication filtering

2019 Thales Alenia Space

Solution within the SAVOIR document tree

Takes into account current & near-future satellites

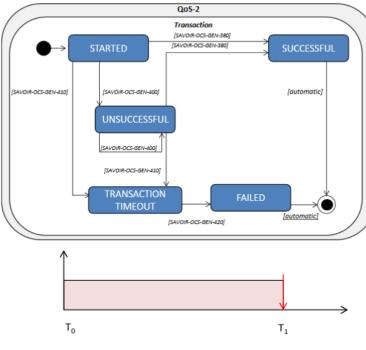


Figure 2: Transmission with determinism property

Lessons Learnt

18

Seasibility and performance of complex communication stack in SW

- Take advantage of future heterogenous target such as the Compact Reconfigurable Avionics (multi-core LEON4 processor + reconfigurable FPGA) or DAHLIA (4 ARM R52 + reconfigurable FPGA) to offload CPU by using the FPGA
 - Sor have dedicated HW controllers
- Senefit from HW / SW algorithm co-design!
- Solution / bridge to communication analysis engines needs to be implemented
- Detailed communication protocol information for fine-grained protocol overhead (or protocol bridging) would be useful
- Recommendations for improvement of the ESA TASTE middleware real-time architecture were provided at the end of activity
- SA relationship with avionics modeling process needs to be established
 - Solution avionics modeling to SW modeling transformation bridges (e.g., Capella to OSRA SCM)

2019 Thales Alenia Space

Thank you for your attention

Questions?

