

Generic Operations Interface Requirements Document (GOIRD)

13th ESA Workshop on Avionics, Data, Control and Software Systems

Ignacio Clerigo

12/11/2019

Agenda

- Introduction
- Generic OIRD overview
- Functional requirements
- PUS-C requirements
- Conclusions

Introduction

- Operability requirements are an early input to the spacecraft development
 - Functional requirements for the space segment, including the payload, necessary for the conduction of all mission operations
 - Prepared by ESA
- For (most) ESA missions → OIRD: Operations Interface Requirements Document
 - Mission-specific
 - Standalone doc or integrated in System Requirements Document (SRD)
 - Tightly coupled with CCSDS and ECSS standards

Introduction

The problem

- A dedicated Operations Interface Requirements Document (OIRD) per mission
- New mission OIRDs are derived from previous OIRDs
 - Lessons learnt not always propagated to other missions and mission families
- OIRDs are perceived as significantly different from one mission to another...
 - ...but difference not necessarily justified or not as big as perceived
 - A similar problem is perceived by operators for what concerns on-board SW implementations
- The operability requirements drives the mission data management services on-board and the Mission Control System on-ground
 - The variability of requirements and implementations hamper product orientation
- OIRDs evolved independently of standards (PUS-C, OBCP, etc.)
 - Partial overlap between OIRD and PUS requirements

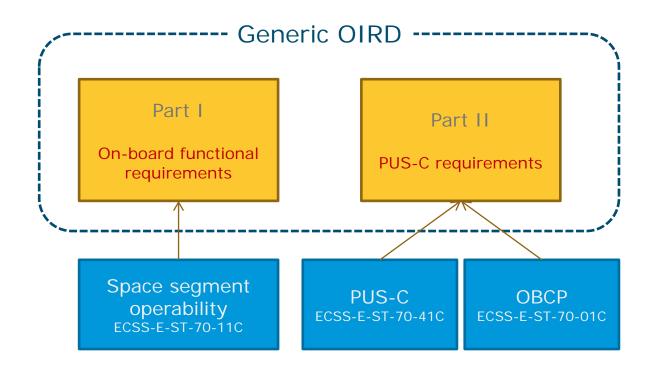
Introduction

- Generic OIRD (GOIRD) foundations
 - SAVOIR entrusted ESOC in June 2016 the task to establish a Generic OIRD
 - It shall form the baseline spec for future missions
 - It shall allow the definition of compatible OBSW libraries

The goal

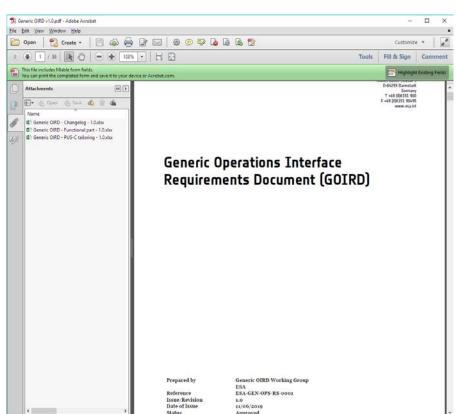
- Create a <u>common</u> OIRD for <u>all</u> new missions
 - Maximize commonality among missions
 - Minimize differences and group them by **mission families**
- Mission OIRDs to be created starting from the generic OIRD
 - Changes limited to mission specific deltas
 - Plus sizing of PUS-C services (e.g. MTL capacity, etc.)
- Generic OIRD to be evolved with lessons learnt and feedback from new missions

Agenda



- Introduction
- Generic OIRD overview
- Functional requirements
- PUS-C requirements
- Conclusions

Generic OIRD - Structure



Generic OIRD - Format

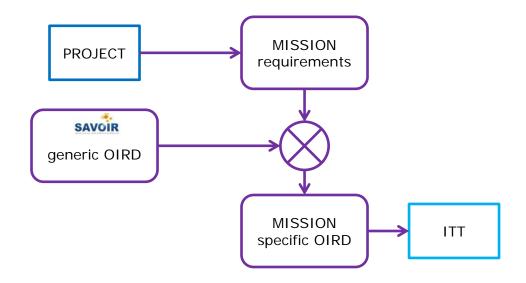
- GOIRD delivered as a PDF document
- 3 Excel files attached → core of the GOIRD
 - Functional requirements
 - PUS-C requirements
 - Plus changelog
 - All changes to PUS-C & functional requirements since Draft A tracked

ESA UNCLASSIFIED - For Official Use

Generic OIRD - Content

- Generic OIRD document
 - Motivation and scope
 - Scope limited to robotic missions with an avionics-like subsystem in mind
 - Description of spreadsheet structure and requirements format
 - Including relationship with ECSS standards
 - Mission OIRD generation instructions

Mission OIRD generation



- GOIRD is **NOT** a replacement of mission OIRDs
 - Missions are still expected to generate their own mission OIRD
 - GOIRD is only a reference document for the mission
- Mission OIRDs shall be produced starting from GOIRD
 - No copy & paste from previous mission OIRDs
 - Instead take all GOIRD requirements and implement mission-specific changes
 - Clear tracing in mission OIRD of changes/additions with respect to GOIRD
 - Changes shall be truly mission specific:
 - Very few deltas with respect to the GOIRD expected in the mission OIRD
 - Definition of mission constants and sizing of PUS-C services
 - De-scope of PUS-C services and functional requirements not applicable to the mission

Mission OIRD generation

1+1

Generic OIRD - Status

- Generic OIRD 1.0 formally released in July 2019
- Used already by multiple projects to build their mission OIRDs
 - Copernicus high-priority candidate missions OIRD
 - ERO / Mars Sample Return OIRD
 - HFRA OIRD
- Generic OIRD will evolve over time
 - Feedback from new projects preparing their mission OIRD (e.g. new features)
 - Lessons learnt from flying missions

Agenda

- Introduction
- Generic OIRD overview
- **Functional requirements**
- PUS-C requirements
- Conclusions

ESA UNCLASSIFIED - For Official Use

Functional requirements - Content

- High-level operability requirements
 - No assumptions on the underlying system architecture
 - PUS agnostic requirements
 - Which capabilities are required is left to the PUS-C tailoring
 - Linked to ECSS Space Segment Operability Standard
 - Traceability maintained w.r.t. Operability Standard
 - But GOIRD functional requirements are self-consistent

ESA UNCLASSIFIED - For Official Use

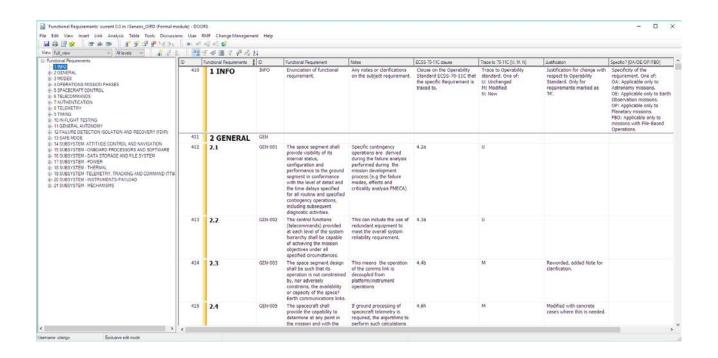
Functional requirements - Content

- Functional requirements groups:
 - General
 - Modes
 - Operations/mission phases
 - Spacecraft control
 - **Telecommands**
 - Authentication
 - Only applicable to Earth Observation missions.
 - Telemetry
 - Timing
 - In-flight testing
 - General autonomy
 - Failure detection isolation and recovery
 - Safe mode
 - Subsystems: Attitude Control And Navigation, On-board Processors and Software, Data Storage and File System, Power, Thermal, TT&C, Payloads and Mechanisms.

Functional requirements - Format

- Functional requirements maintained in DOORS
 - Requirements can be provided as DOORS modules on-demand
- First module contain all the requirements
 - ID
 - Requirements and notes
 - Relationship to ECSS-E-ST-70-11C (unchanged, new or modified) and clause
 - Justification for modified requirements wrt ECSS
 - Mission-family specific flag to report requirements specific to interplanetary, astronomy or Earth Observation
- Second module contains list of Operability Standard requirements tailored out

ESA UNCLASSIFIED - For Official Use



Functional requirements - Format

Agenda

- Introduction
- Generic OIRD overview
- Functional requirements
- PUS-C requirements
- Conclusions

PUS-C requirements

- PUS-C is a major step forward compared to PUS-A
 - Solid PUS foundational model
 - Clear and extensive system requirements
 - Behavior of each service type and related TCs is (almost) unambiguous
 - Clear interface definition separated from system requirements
 - New service types and sub services (file management, S3 func. Reporting, etc.)

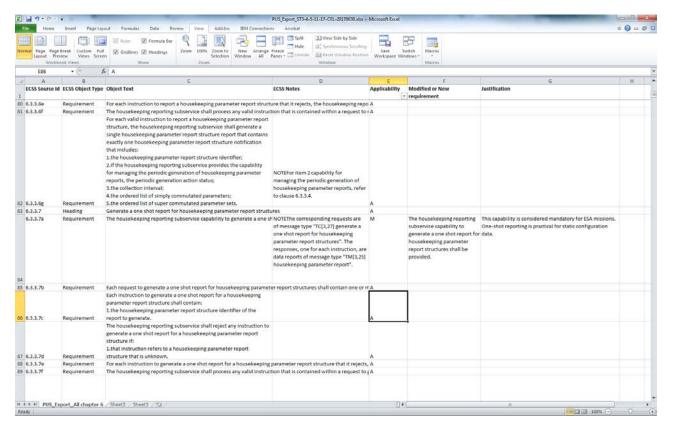
PUS-C requirements

- Why do not use the PUS-C standard as is?
 - 20 services with 33 subservices defined but no mapping to a specific architecture
 - Which services to implement and where?
 - **316** TCs and TM reports (if all subservices implemented) but only **88** are **mandatory**
 - Tailoring required to define functionality required by the mission
 - 382 "shall be declared when specifying" statements
 - Large number of capabilities and options
 - Without tailoring, 2 PUS-C implementations will result in very different interfaces
 - Some important functionalities for ESOC missions are not covered
 - Critical Event Log/System Log, file transfer, backup MTL...
 - Feedback and lessons learnt from 50+ years of operations
 - A few important requirements from mission OIRDs not captured in PUS-C

ESA UNCLASSIFIED - For Official Use

PUS-C requirements - Format

- PUS-C implemented in DOORS
 - Against the original PUS-C standard in DOORS format
 - Additional columns
 - Applicability flag (unchanged/modified/deleted/new)
 - Justification for each change
 - Multiple export possibilities
 - Full tailored standard or deltas only
 - In Excel, PDF, DOORS module...



PUS-C requirements - Format

- Services, subtypes and capabilities selection
 - Agreed in a common set of services and subservices for all future ESA missions
 - Same set of TC and TM packet types and subtypes
 - Fix set of capabilities
 - Interface to satellite is fairly independent of the mission → A single tailoring for all ESA missions
 - About 60% of the total GOIRD requirements for PUS-C

Additional observables

- PUS-C heavily relies on (on-demand) reports
 - Few mandatory parameters to be provided in HK
- Additional observables added to most services
 - Based on observables typically available on modern spacecraft
- About 2% of the total GOIRD requirements for PUS-C

New capabilities

- Features required by ESA missions not covered by PUS-C standard
 - Critical event log / System log
 - Parameter extraction from HK
 - Backup MTL
 - File based operations
- Covered as **new sections**
 - High level requirements only → no PUS-C style text, TC and TM interface not defined
 - Implementation details left intentionally open
- To be raised as change requests to the standard to be considered in future versions
- About 19% of the total GOIRD requirements for PUS-C

- Avionics architecture definition
 - PUS-C does not make any assumption about the avionics architecture
 - But architecture definition has a huge impact on operability
 - A few services required to be implemented in a centralized way
 - E.g. Service 11 (Mission Timeline)
 - A few services mandated to be implemented in all packetized units
 - Services 1, 3, 5, 6 (if applicable) and 17
 - Less than 1% of the total GOIRD requirements for PUS-C

- Clarifications and refinements
 - Lessons learnt from previous missions and mission OIRDs
 - About 12% of the total GOIRD requirements for PUS-C
- Changes to the standard
 - Changes to PUS-C behavior limited to the absolute minimum
 - No modification of defined TCs and TMs interfaces
 - Clear justification (typos or omissions, strong operational needs)
 - Less than 1% of the total GOIRD requirements for PUS-C
 - To be raised as change requests to the standard to be considered in future versions

PUS-C requirements - Problems

- PUS-C implementation is not straightforward
 - Key low level aspects have not been standardize in PUS-C
 - Example: number of bytes to encode certain packet fields
 - Very important for inter-operability of PUS-C units!
 - Interface and detailed implementation of new features proposed in GOIRD is open
 - → Coordination across PUS-C library implementers desired!

OBCP requirements

- No tailoring of the ECSS OBCP standard in the GOIRD
 - The current version of the standard satisfies most ESA needs
 - → Few extra requirements added directly in the PUS-C requirements for service 18 (OBCP)

Agenda

- Introduction
- Generic OIRD overview
- Functional requirements
- PUS-C requirements
- Conclusions

Conclusions

- Generic OIRD
 - New approach at ESA for operability requirements
 - Common set of functional and PUS-C requirements for future ESA missions
 - Goal is to reduce variability and cost
 - Definition of compatible OBSW libraries
 - Further harmonisation of ground segment
- Long term vision
 - Collaboration among PUS-C libraries developers?
 - Interoperable PUS-C implementations and generic TM/TC ICD?
 - Further harmonization of other elements: procedures, databases...

ESA UNCLASSIFIED - For Official Use

