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Data Handling H/W in the early 80-ies
• OTS, ECS, MARECS, TELECOM-1 and 

SKYNET satellites:
• Telecommand Decoder unit (typically 9 boards)
• Telemetry Encoder units (5 – 6 boards)

• TTC-A-01 and TTC-A-02 standards
• 96 bit TC frames carrying 3 byte commands
• TM frames with typically 128 or 256 bytes 

repeated to form a matrix with one column 
containing a frame counter and other columns 
sync and data

• The OTS implementation did not have a PROM 
as PROMs were considered too immature in 
the 70-ies !

Credit: Saab Scania



Introducing the OBDH bus
• The TTC-B-01 standard defines the bus

• 32-bit interrogations and 13/21 bit responses
• Transformer coupled using Litton coding

• ESA-funded developments:
• Bus coupler connector including transformers 

(Dornier)
• Bus interface hybrid (Crouzet)
• Central Terminal Unit, CTU (Saab-Scania)

• First telecom satellites with OBDH bus:
• TV-SAT/TDF/TELE-X 

(Spacebus-300 platform)

Credit: Saab Space
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Selected for the Hipparcos satellite

• Based on the TELE-X Data handling merged 
with the SPOT-1 OBC

• Some features
• TC to the RTU directly to the OBDH bus
• TC packets to the OBC S/W
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Credit: Saab Space



Software scheduling in the early 80-ies



16-bit microprocessor in the DHS
• The discrete logic in the CTU was to a large extent 

replaced by an 80C86 microprocessor from Japan for the 
Eultelsat-2 family (Spacebus-2000 platform)

• The MAS-281 from GEC Plessey was introduced in 
SOHO and later used in the Spacebus-3000A platform

• The development of a 3 MIPS 1750 processor was then 
initiated by ESA due to the needs from the Hermes space 
shuttle.
• Hermes was terminated in 1992 but the MA31750 was, after 

several chip revisions, a success and was used in ENVISAT, 
Meteosat Second Generation, the Spacebus-3000B platform, ATV, 
Rosetta and the PROTEUS platform

• For SPOT-4 and the ENVISAT, an F9450 processor from Fairchild 
was used, but later replaced by MA31750 for METOP A-C



Why was 31750 a success?
• It solved a problem that could not be solved by other 

technology available to European companies
• It was fairly simple to design and use the processor

• It could also be used as radiation shielding 
• There was adequate software development environment 

available for a long time



32-bit microprocessors
• Before Hermes was terminated it was realised that more than 3 

MIPS was needed
• A workshop was held at ESA and the outcome was to initiate a 

development of a SPARC V7 based processor (ERC32) 
including a Software Development Environment 
• Ada compiler and debugger, Schedulability analyser, Scheduler 

simulator, CPU target simulator
• Saab Ericsson Space won the contract using 5 subcontractors
• One of the first designs using the ERC32 chip set has not yet 

been launched (European Robot Arm OBC) !!

• The rest is history and was presented by Jiri Gaisler at ADCSS 
2017
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Computers in most satellites

Configuration 
commands

Redundant
computer

Nominal
computer

Supervisor
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I/O

System alarm
• High error detection 

coverage

• Slow switchover
(typically 5 - 10 s)

• Supervisor can be 
internally redundant

• Context continuously 
saved in the supervisor
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Ariane5 computers
• High error detection 

coverage

• Fast switchover
(typically 50 ms)

• Context continuously 
exchanged over the I/O 
bus 

Redundant
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Credit: RUAG Space



Majority voting computers
Used in manned space applications
(International Space Station, ATV)

• Errors are masked without 
functional interruption

• Very high reliability for short 
missions

• Every computer has dual 
processors for nominal and 
back-up mode

Example:  Computers developed for the 
space shuttle Hermes

Intercomputer comm. links
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Computer
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Computer
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Computer
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Computer
no 4



ATV had a separate monitoring computer

• MSU (Monitoring and Safing Unit) 
supervises the docking process

• In case of hazardous event a 
Collision Avoidance Manoeuvre is 
carried out
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Credit: Saab Ericsson Space



Rosetta, Mars Express, Venus Express 
computers

Super-
visor
no 1

Super-
visor
no 2

Super-
visor
no 3

Super-
visor
no 4

Command
generator

Command
generator

DMS I/O

AOCS I/O

Computer
no 1
(DMS)

Computer
no 2

(AOCS)

Computer
no 3

Computer
no 4



Rosetta Main computer

 Two identical boxes with in total 
four computers, of which two are 
active at a time

CPU: MA31750@8 MHz
16-bit processor

Memory: 2 MiByte
Power: 20 W
Mass: 9 kg

Credit: Saab Ericsson Space



Why did ATV and Rosetta become so 
complex ?
• Several opinions about the architecture were introduced 

into the proposal requirements
• The cost impact of these opinions could not be handled 

during the negotiation and iterations of the system 
concept had to be done during the development

• ATV could have been implemented without the MSU if the 
fault tolerant computer pool would have been tolerant also 
to a software failure

• Rosetta could have been implemented with a classical 
CDMS and AOCS computer configuration



How did SAVOIR start?
• Increasing cost pressure
• Desire to harmonise developments
• Reuse of hardware from project to project

• Avoid discussions about CDMS and AOCS architecture 
implementations

• Reduce variability
• The following slide initiated some discussions at ESA 



Basic problem, variability
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CDMS basic blocks, school-book version
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Evolved into the ESA SAVOIR functional 
architecture
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Discussions still remain
• FDIR aspects in particular are prone to qualitative thinking 

without considering quantitative aspects, e.g.:
• Landing the ExoMars Rover with de-flatable airbags required hot 

operating computers the last seconds of the landing
• The probability of losing both computers before arriving at Mars is much 

higher than the probability of a failure during the last minute
• Failures causing the loss of 50% of e.g. the payload are not 

accepted even they are very unlikely (< 1 fit)
• Introduces unnecessary complexity and quite a lot of extra hardware 

without improving the system reliability



Some other terms you might not have 
seen or heard of before
• MACS bus

• Modular Attitude Control System bus
• A custom development intended to standardise the interface to 

AOCS units
• No transformer coupling
• Flown in a few satellites, ISO was the one I worked with

• Regulated square wave AC power
• Used within the DHS and the payload in Hipparcos

• THOR microprocessor
• Custom development by Saab Space, available 1993
• Stack architecture with Ada RTS support in H/W
• Flown in two Swedish satellites, Astrid 1 (1995)

and Odin (2001)
Credit: Saab Ericsson Space



Why have these technologies not 
survived ?
• They were basically bottom-up approaches that had a 

“brilliant” basic concept that, although solving a specific 
problem, was not sufficient to motivate a long term 
existence of the product

• The MACS bus was too costly to maintain for the AOCS 
sensor and actuator suppliers, other links were selected

• For the AC power it simply turned out to be more complex 
than classical DC/DC converters, i.e. the trade-offs made 
were too optimistic

• THOR lacked a good software development environment 
and was never able to compete with commercial 
instruction sets



Highlights during these 38 years
• Working together with skilled engineers from different 

countries
• Co-engineering activities during B-phases are very efficient

• Experiencing a launch campaign on site at ESOC
• With extensive work due to a satellite malfunction

• Rosetta wake-up after 10 years of travel to the comet

• Setback:
• No live experience of a launch
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