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Data Handling H/W In the early 80-ies

- OTS, ECS, MARECS, TELECOM-1 and

SKYNET satellites:
- Telecommand Decoder unit (typically 9 boards)
- Telemetry Encoder units (5 — 6 boards)

- TTC-A-01 and TTC-A-02 standards

- 96 bit TC frames carrying 3 byte commands Crodit: Saab Seania

- TM frames with typically 128 or 256 bytes
repeated to form a matrix with one column
containing a frame counter and other columns

sync and data

- The OTS implementation did not have a PROM
as PROMSs were considered too immature in
the 70-ies !
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Introducing the OBDH bus

- The TTC-B-01 standard defines the bus

- 32-bit interrogations and 13/21 bit responses
- Transformer coupled using Litton coding

- ESA-funded developments:

- Bus coupler connector including transformers
(Dornier)

- Bus interface hybrid (Crouzet)
- Central Terminal Unit, CTU (Saab-Scania)

- First telecom satellites with OBDH bus:

- TV-SAT/TDF/TELE-X
(Spacebus-300 platform)

Credit: Saab Space
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Selected for the Hipparcos satellite
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- Based on the TELE-X Data handling merged
with the SPOT-1 OBC

- Some features
- TC to the RTU directly to the OBDH bus
- TC packets to the OBC S/W



Software scheduling in the early 80-ies
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16-bit microprocessor in the DHS

- The discrete logic in the CTU was to a large extent
replaced by an 80C86 microprocessor from Japan for the
Eultelsat-2 family (Spacebus-2000 platform)

- The MAS-281 from GEC Plessey was introduced in
SOHO and later used in the Spacebus-3000A platform

- The development of a 3 MIPS 1750 processor was then
Initiated by ESA due to the needs from the Hermes space
shuttle.

- Hermes was terminated in 1992 but the MA31750 was, after
several chip revisions, a success and was used in ENVISAT,
Meteosat Second Generation, the Spacebus-3000B platform, ATV,
Rosetta and the PROTEUS platform

- For SPOT-4 and the ENVISAT, an F9450 processor from Fairchild
was used, but later replaced by MA31750 for METOP A-C



Why was 31750 a success?

- It solved a problem that could not be solved by other
technology available to European companies

- It was fairly simple to design and use the processor
- It could also be used as radiation shielding ©

- There was adequate software development environment
available for a long time



32-bit microprocessors

- Before Hermes was terminated it was realised that more than 3
MIPS was needed

- Aworkshop was held at ESA and the outcome was to initiate a
development of a SPARC V7 based processor (ERC32)
Including a Software Development Environment

- Ada compiler and debugger, Schedulability analyser, Scheduler
simulator, CPU target simulator

- Saab Ericsson Space won the contract using 5 subcontractors

- One of the first designs using the ERC32 chip set has not yet
been launched (European Robot Arm OBC) !

- The rest is history and was presented by Jiri Gaisler at ADCSS
2017



Technology trends, CPU performance
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Computers in most satellites
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Ariane5 computers
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Redundant coverage

computer

Error signal

Nominal
computer

 Fast switchover
(typically 50 ms)

* «  Context continuously
exchanged over the 1/0

1/O bus

Ariane5 computer
(right)

Vega computer
(left)

New Ariane5 computer

Credit: RUAG Space



Majority voting computers

Used in manned space applications
(International Space Station, ATV)

Example: Computers developed for the
space shuttle Hermes

Intercomputer comm. links
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ATV had a separate monitoring computer
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Credit: Saab Ericsson Space

MSU (Monitoring and Safing Unit)
supervises the docking process
In case of hazardous event a
Collision Avoidance Manoeuvre is
carried out
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Rosetta, Mars Express, Venus Express
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Rosetta Main computer

= Two identical boxes with in total
four computers, of which two are
active at a time

CPU: MA31750@8 MHz
16-bit processor

Memory: 2 MiByte

Power: 20 W

Mass: 9 kg

Credit: Saab Ericsson Space
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Why did ATV and Rosetta become so

complex ?

- Several opinions about the architecture were introduced
Into the proposal requirements

- The cost impact of these opinions could not be handled
during the negotiation and iterations of the system
concept had to be done during the development

- ATV could have been implemented without the MSU if the
fault tolerant computer pool would have been tolerant also
to a software failure

- Rosetta could have been implemented with a classical
CDMS and AOCS computer configuration
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How did SAVOIR start?

- Increasing cost pressure
- Desire to harmonise developments

- Reuse of hardware from project to project

- Avoid discussions about CDMS and AOCS architecture
implementations

- Reduce variabllity
- The following slide initiated some discussions at ESA ©



Basic problem, variability
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CDMS basic blocks, school-book version
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™
CADUs

Discrete
signals

Evolved into the ESA SAVOIR functional
architecture
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Discussions still remain

- FDIR aspects in particular are prone to qualitative thinking
without considering quantitative aspects, e.g.:
- Landing the ExoMars Rover with de-flatable airbags required hot
operating computers the last seconds of the landing
- The probability of losing both computers before arriving at Mars is much
higher than the probability of a failure during the last minute
- Failures causing the loss of 50% of e.g. the payload are not
accepted even they are very unlikely (< 1 fit)

- Introduces unnecessary complexity and quite a lot of extra hardware
without improving the system reliability



Some other terms you might not have

seen or heard of before

- MACS bus

- Modular Attitude Control System bus

- A custom development intended to standardise the interface to
AOCS units

- No transformer coupling
- Flown in a few satellites, ISO was the one | worked with

- Regulated square wave AC power
- Used within the DHS and the payload in Hipparcos

- THOR microprocessor
- Custom development by Saab Space, available 1993
- Stack architecture with Ada RTS support in H/W

- Flown in two Swedish satellites, Astrid 1 (1995)
and Odin (2001)

Credit: Saab Ericsson Space



Why have these technologies not

survived ?

- They were basically bottom-up approaches that had a
“brilliant” basic concept that, although solving a specific
problem, was not sufficient to motivate a long term
existence of the product

- The MACS bus was too costly to maintain for the AOCS
sensor and actuator suppliers, other links were selected

- For the AC power it simply turned out to be more complex
than classical DC/DC converters, i.e. the trade-offs made
were too optimistic

- THOR lacked a good software development environment
and was never able to compete with commercial
Instruction sets
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Highlights during these 38 years

- Working together with skilled engineers from different
countries

- Co-engineering activities during B-phases are very efficient

- Experiencing a launch campaign on site at ESOC
- With extensive work due to a satellite malfunction

- Rosetta wake-up after 10 years of travel to the comet

- Setback:

- No live experience of a launch
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