

ESA Operational Ground CFDP & DTN Implementations

Felix Flentge

12/11/2019

ESA UNCLASSIFIED - For Official Use

Agenda

- CCSDS File Delivery Protocol (CFDP)
 - CFDP Ground Implementation
 - CFDP at the Ground Station Euclid Example
 - Distributed CFDP Copernicus Extension
- Delay Tolerant Networking
 - Application Scenarios
 - Ground DTN Implementations Bundle Protocol & Licklider Transmission Protocol
 - Ground DTN Assembly
 - OPS-SAT Demonstration
- Conclusion

ESA UNCLASSIFIED - For Official Use

4

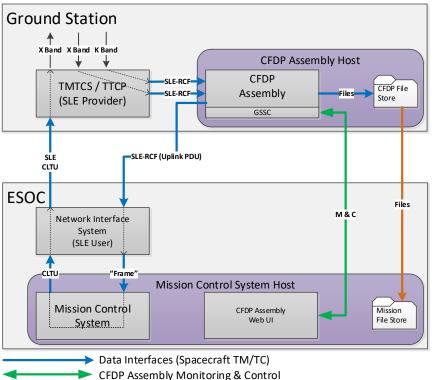
CCSDS FILE DELIVERY PROTOCOL (CFDP)

ESA UNCLASSIFIED - For Official Use

Felix Flentge | ESOC | 12/11/2019 | Slide 3

+

CFDP Implementations



- Operational Ground Segment CFDP Implementation (Java)
 - used by Euclid, Juice, Plato, OPS SAT (on-ground & on-board), ...
 - licenseable to European Industry and under maintenance
 - all CFDP Protocol features (Class 1-4)
 - pluggable UT Layers (UDP, TCP, SPP, SLE) and Filestores
 - Used in Mission Control Systems (S2K, EGOS-CC), Simulators (GSTVi), Ground Station Systems (CFDP Assembly, NDIU), Test & Validation
- Remote CFDP Assembly (Euclid)
 - receives/sends CFDP PDU via SLE (Space Packets / TM Frames)
 - web-based UI
- Planned: **Distributed CFDP** for EO Payload Downlink (Copernicus Extension)

ESA UNCLASSIFIED - For Official Use

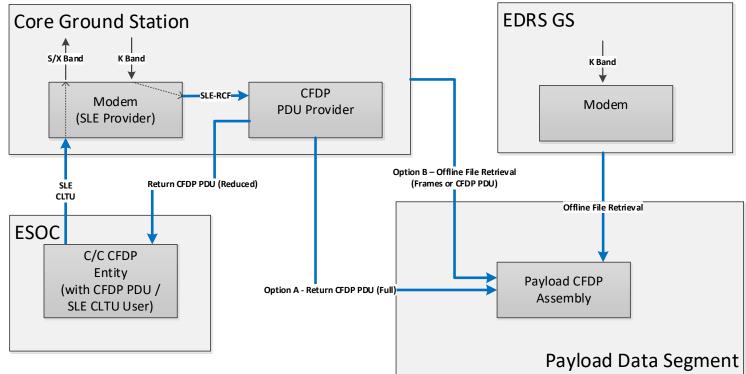
· = ■ ► = = + ■ + ■ = ≝ = ■ ■ ■ = = = = ■ ■ ■ ■ = = = = ₩ =

CFDP Class 2 with less reliable links – **Euclid Mission Example**

Mission Specific Transfer of Files to Target Location

ESA UNCLASSIFIED - For Official Use

Euclid Mission (L2):


- Less reliable Ka-Band link (re-transmission necessary)
- 5-10 seconds round-trip delay
- ~ 75 Mbit/sec science downlink but only ~ 2 Mbit/sec guaranteed terrestrial bandwidth + ?? Mbit/sec un-guaranteed bandwidth (academic internet)

\rightarrow Re-assemble files in the ground station and download later

Copernicus Extension – Distributed CFDP (proposal)

ESA UNCLASSIFIED - For Official Use

Felix Flentge | ESOC | 12/11/2019 | Slide 6

•

DELAY TOLERANT NETWORKING (DTN)

ESA UNCLASSIFIED - For Official Use

Felix Flentge | ESOC | 12/11/2019 | Slide 7

+

= ■ ▶ = = + ■ + ■ ≡ = 2 ■ ■ = = = = ■ ■ ■ ■ ■ ■ = ** •

DTN Intended Application Scenarios

1. Human Space Flight and Robotic Exploration

- DTN is in the LOP-G communication requirements and the IOAG Lunar Communications Architecture
- 2. Optical Ground Stations
 - BP as inter-operable protocol for less predictable downlinks ("data-volume" instead of "passbased" data delivery approach)
 - LTP (extended/optimised as required) to replace the proprietary re-transmission schemes on the uplink beacon for optical Direct-to-Earth links

3. Earth Observation Missions

- LTP for less reliable links (K-Band, optical)
- De-coupling of file data from transmission units (LTP segments / bundles) allowing transparent use of multiple (downlink-only) ground stations

 \rightarrow Please note that Scenario 2 + 3 will need **high performant implementations** (up to 10 Gbit/sec) which might require optimisation of the standards themselves

ESA UNCLASSIFIED - For Official Use

Felix Flentge | ESOC | 12/11/2019 | Slide 8

ESA Ground DTN Protocol Implementations

- Bundle Protocol (CCSDS 734.2-B-1 compliant)
 - Plain Java Library & BP Daemon (ZeroMQ Client Interface)
 - Flexible structure similar to CFDP Implementation
 - BP 1.0.0 released Q3/2019
 - Update to BPv7 planned
- Licklider Transmission Protocol
 - Operational implementation kicked-off
 - Study on protocol performance improvements (update to LTP standard) planned

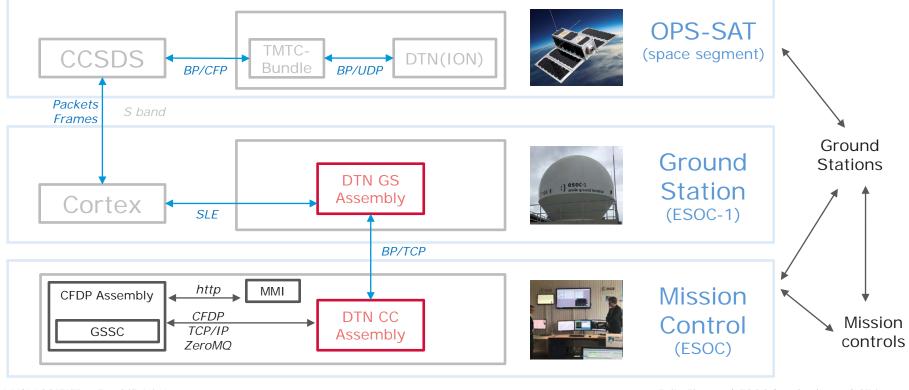
ESA UNCLASSIFIED - For Official Use

Ground DTN Node – DTN Assembly

- based on Java BP Implementation, includes LTP implementation
- SLE-RCF / SLE-CLTU interfaces for integration with existing modems (Cortex, ESA TTCP)
- TM / TC Frame & CCSDS Space Packet Processing
- ESA M&C protocol for ground station integration
- Web-based MMI

→ Full operational implementation has been kicked-off; focus on "operability"

ESA UNCLASSIFIED - For Official Use


Felix Flentge | ESOC | 12/11/2019 | Slide 10

CFDP-enabled System Overview

*

Experiment

ESA UNCLASSIFIED - For Official Use

Felix Flentge | ESOC | 12/11/2019 | Slide 11

The set of th

CONCLUSION

ESA UNCLASSIFIED - For Official Use

Felix Flentge | ESOC | 12/11/2019 | Slide 12

+

· = ■ ▶ = = + ■ + ■ = ≔ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ** **

Conclusion

- File-based operations with CFDP Class 1 / Class 2 as File Delivery Protocol baseline for current and upcoming ESA missions
 - Mature Ground Implementation available
 - Ground deployment depending on mission characteristics in Mission Control System, the Ground Station or as Distributed CFDP
- Delay Tolerant Networking considered in the context of Exploration Missions (Lunar, Mars & Beyond), optical ground stations and future Earth Observation
 - Operational Ground Implementation started for Bundle Protocol, LTP
 - High-performance implementations needed
 - Updated (LTP) & additional standards (BPSec, Network Management) expected
 - Demonstrations with OPS-SAT and potentially other cubesat missions

ESA UNCLASSIFIED - For Official Use

Felix Flentge | ESOC | 12/11/2019 | Slide 13

= 11 🛌 == + 11 == 🔚 == 11 11 == == 🔚 🖬 🖬 == 11 👭 🔚