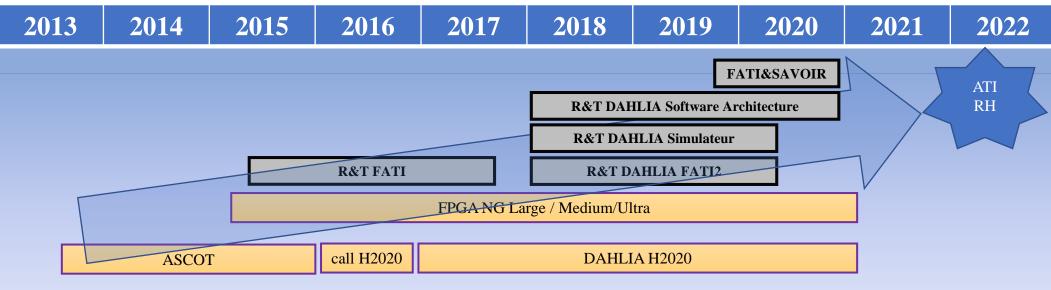
ROADMAP

Future very integrated avionic for satellite platform base on hi-rel component NanoXplore NG-Ultra and Dahlia SoC

DSO/TB/ET, DSO/TB/LV, DSO/AVI/AV, DSO/AVI/VS CNES

(Presenter: L. CLARAC DSO/AVI/AV)


ADCSS 14/11/2019

Context

□ Initiative for Hi-Rel solutions for avionic & space applications

- Preparation of the next generation of de System-On-Chip in the frame 2020-2025
- ✓ ASCOT (Arm Spacecraft Controller On 65nm Technology) and FATI ("Future Avionic Très Intégrée")
- ✓ Assessment of the impacts of more compact on-board avionics systems
- ✓ Development of competitive FPGA products by European company NanoXplore

□ CNES Research & Technologies Plan and the Projet H2020 DAHLIA

Context: Projet DAHLIA H2020

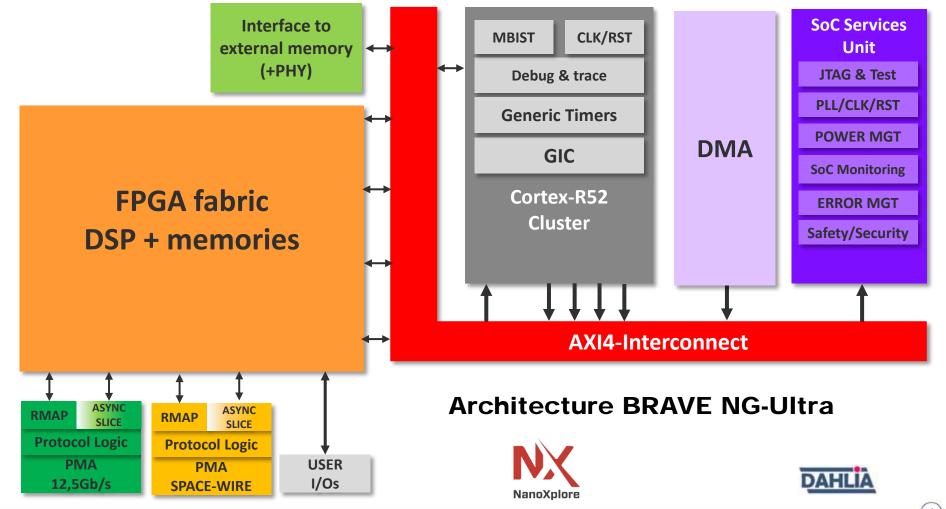
DAHLIA is an answer to the H2020 topic "COMPET-1-2016: Critical Space Technologies for European Strategic Non-Dependence" http://dahlia-h2020.eu

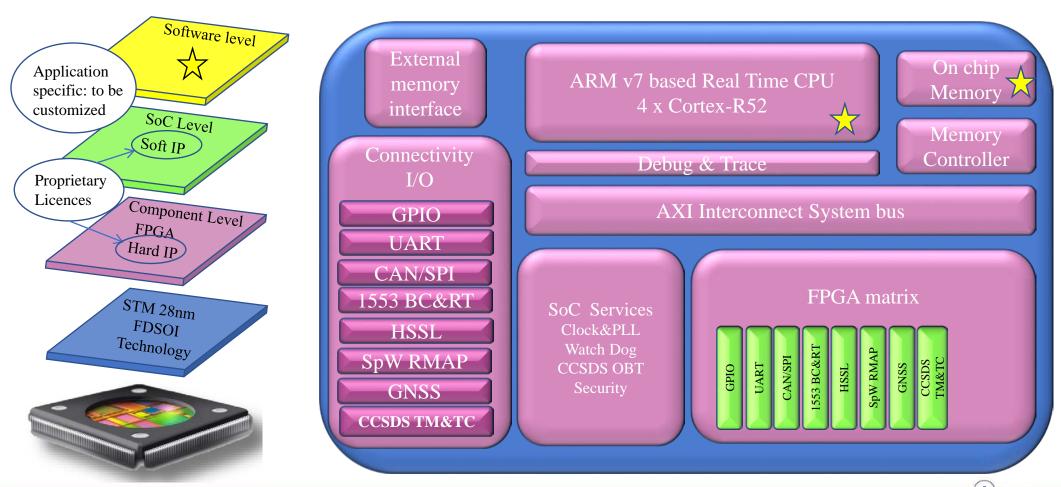
DAHLIA solution is an ARM-based System on Chip implemented in 28nm FDSOI technology designed to boost competitiveness and ensure strategic non dependence of future European Space

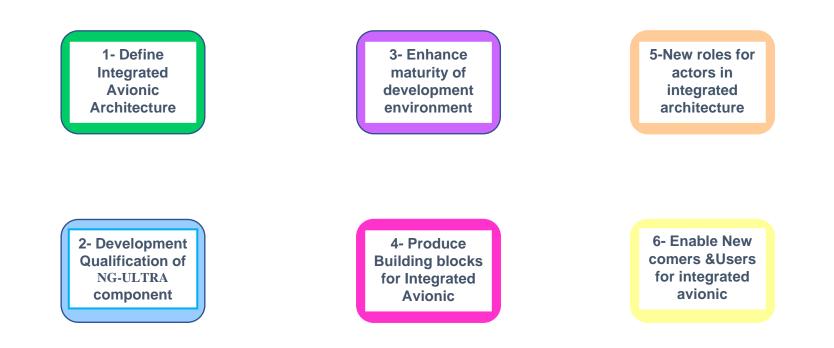
H2020 project organization

Consortium: 7 partners – 4 countries

- ST France, coordinator
- Airbus D&S Germany& France
- Thales Alenia Space Italy& France
- ISD Greece& NanoXplore France




Very Integrated Avionic Architecture Roadmap for space application based on Hi-rel component NanoXplore NG-Ultra / Dahlia

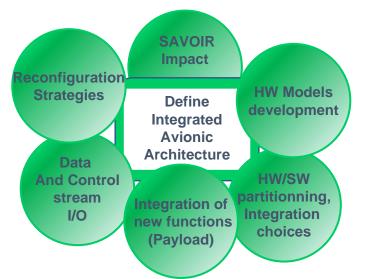


Context: Multi Processor SoC defined in H2020 DAHLIA project

1- Define integrated Avionic Architecture

- **1.1 Integration level definition: HW/SW partining integration choice**
- ✓ Choice of centralises or de-centralize architecture
- ✓ Choice of functions to integrate with impact on functions and equipment design

1.2 Integration of new functions


Impact on architecture of payload function integration

1.3 Data and control stream analysis

Choice of the interfaces and buses

1.4 Reconfiguration and redundancy strategy

- ✓ Failure modes and reset tree, Reliability Analysis
- ✓ Use of DTC and eTM
- **1.5 Identification of impact on SAVOIR**
- **1.6 HW models development**
- ✓ EBB or EM OBC module for a proof of concept of integrated architecture

2. Development and qualification of NanoXplore NG-ULTRA component

2.1 Development of the multi-processor SoC solution

Definition and development of SoC in H2020 DAHLIA project + NG-ULTRA component

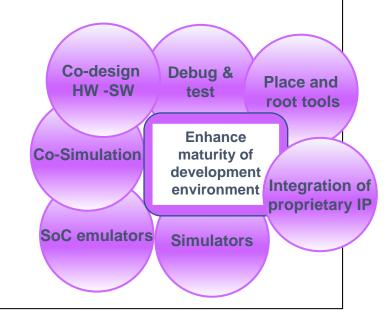
2.2 Space qualification of the component and the packaging

- ✓ Technology 28nm FDSOI qualification
- ✓ NG-ULTRA component and packaging qualification

2.3 Commercial offer for NG-ULTRA product

- ✓ NG-ULTRA is part of the NanoXplore product line
 - Development environment for hardware design: NanoXmap solution
 - Starter Kit and evaluation board
 - Hardware and Software libraries

3. Enhance maturity of development environment


3.1 Simulation environment for application and system with NG-Ultra

- Co-design d'IPs HW/SW
- o Co-simulation RTL for complex IP
- o Proprietary IP integration

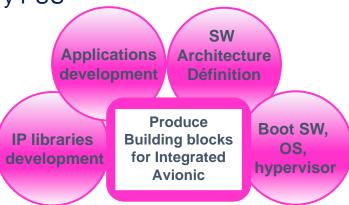
3.2 SoC Emulator & NG-Ultra virtual platform

3.3. Simulators

- Software development environment for early Flight SW
- o System simulator for operations
- o System simulator for AIT

4- Produce Building blocks for integrated avionic

4.1 Software


- Software architecture definition
- Development and qualification of OS, Hypervisor, Library PUS
- Development of applications
- ✓ IP libraries

4.2 Hardware IP librairies (in the FPGA matrix)

- ✓ SoC services and specific
- Avionic functions
- Specific application

4.3 Intellectual Property and licences


- Ensure acceptable licences condition for tools and libraries
- Equipment provider need to develop proprietary IPs (and new hardware) for integration in the architecture

5- New roles for actors in integrated architecture

- 5.1 List Equipments and impacted suppliers
- Avionic candidates functions for integration are numerous: SCAO, Star tracker, GNSS, TM/TC...
- ✓ Only numerical functions will be executed on the System-on-Chip
- 5.2 New products Portfolios for the equipment providers
- ✓ New product development
- ✓ IP of the integrated function to be integrated in the SoC
- 5.3 Support « HW to IP » transition

Access to IP

portfolios

Access to

Development

environment

Enable New

comers &Users

for integrated avionic

6- Enable New comers &Users for integrated avionic architecture

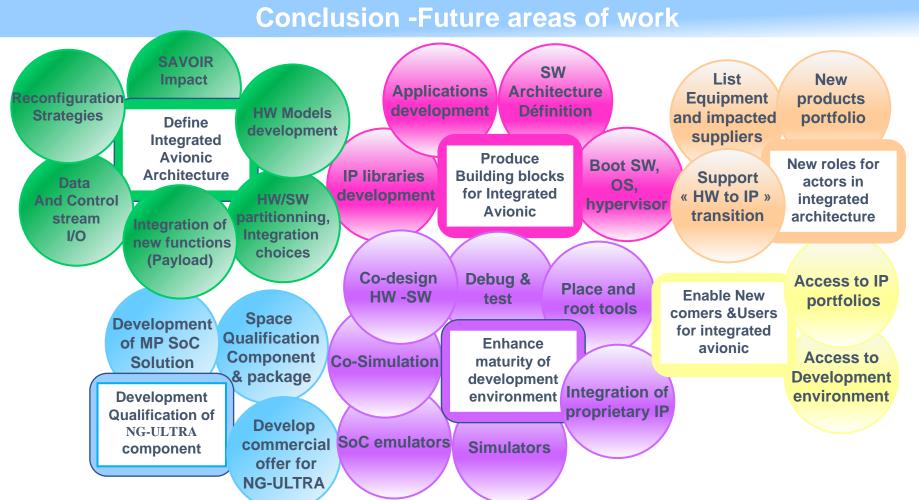
6.1 Objectives

Future areas of work

- ✓ Identify key IPs for space applications and enable their development for NG-ULTRA
- Ensure that all the documentation and tools are available to new comers to use the SoC
 - Lab for scientific missions
 - Small companies
 - Equipment suppliers

6.2 What is needed ?

- ✓ NG-ULTRA product with development tools available by NanoXplore
- Simulations tools for IP development (before the availability of the component)
- Availability of building blocks (component with development board, simulators, IP library)
- ✓ Initiate strategic IPs development with affordable licences conditions for new comers


CONCLUSION

- Building block for very integrated avionic core need to be available in 2020-2021
 - NG-ULTRA prototypes
 - OBC architectures
 - IP portfolios
 - Software architecture
 - Simulations tools

□ Need to enable the use of the technology by new comers: scientific community, small companies: Documentation, licences, test benches

□ Prepare evolutions of SAVOIR specifications with ESA and industry to take into account specificities of very integrated avionic

End of the presentation Thank you

