

ADCSS 2019

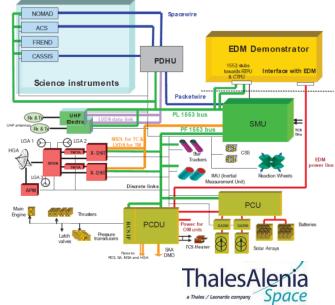
High QoS Communication Networks: TSN?

13th of Novembre 2019

Needs for High QoS Communication Technologies (ADCSS 2018)

Non-functional needs:

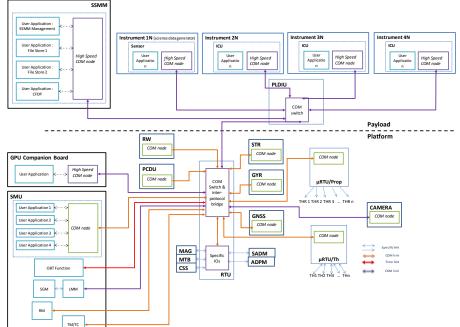
Cheap, small IP footprint, simple OBSW drivers, low power consumption, standardized, multi-sourcing, large community, easy configuration, FDIR & testability


Quality of Service & data rates:

Deterministic data deliveries for Command/Control packets: Bounded latency, Acknowledgements of critical data transfer

> Flexible data rates & number of connected units

- In current missions: <1Mbps & less than 30 connected units
- In future missions: often the same as for current missions, sometimes improved with 10-100Mbps (STR, future RW, visionbased nav, others); sometimes > 40 units; sometimes very lengthy connexions requiring decentralization



Needs for High QoS Communication Technologies (OSRA-NET)

OSRA-NET: Performance?

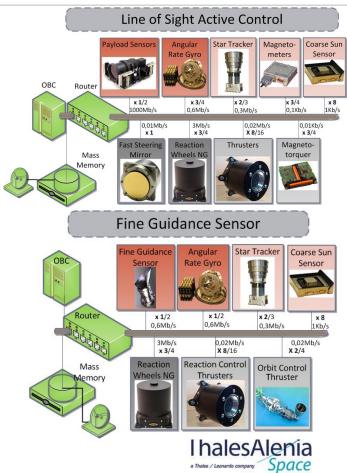
- > OSRA-NET analysed current & near-future needs in communication systems and performed a grouping of need in 7 classes, including Command/Control and payload telemetries
- Command/Control is preferably implemented through classes 2 or 6, but can be implemented through point-to-point links using other classes

	Freq o exchange	QoS			Data Rate scale		Jitter	Latence	Level of determism		Timestamp		
Class	Min	Max	0	1	2	Min	Max	ms	ms	None	guaranteed bounded latency	deterministic	Mandatory / Optional
1	0,1	1	х	х		100 bits/s	10 kbits/s	10	10		х		Optional
2-a	4	32		х	х		1 Mbits /s	5-10	10			x	Optional
2-b	4	32		х	х		1 Mbits /s	5-10	10		х		Mandatory
3	8	10			х		250 kbits /s	5	10			х	Optional
4	0,1	1	х	х		100 Mbits/s		up to 100	up to 100	х	x		Optional
5-a	10	1000		х	х		3 Mbits/s	0,5-1	0,5			х	Optional
5-b	10	1000		х	х		3 Mbits/s	0,5-1	0,5		х		Mandatory
6	1	10		х	х	100 Mbits/s		2	10			х	Mandatory
7	1	10	х	х		100 bits/s	1 kbits/s	1	2			x	Optional

Focus on Time-Sensitive Network technology

Defined through a set of multiple open standards:

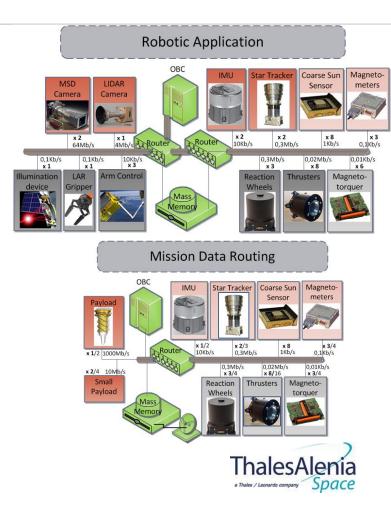
- > IEEE 802.1AS-Rev Timing and Synchronization for Time-Sensitive Applications Precision Time Protocol (PTP)
- > IEEE 802.1Qbv: scheduled traffic
- > IEEE 802.1Qca: path control & reservation
- > IEEE 802.1Qcc: central configuration
- > IEEE 802.1CB: seamless redundancy
- > IEEE 802.1Qci: time-based ingress policing
- > IEEE 802.1Qbu & IEEE 802.3br (preemption)
- > IEEE 802.1Qch: Cyclic Queuing and Forwarding
- Under investigation from many industries: automotive, aeronautics
- Leveraging on Ethernet transceivers development for space applications
- Testbench units available from many suppliers at relatively cheap prices
- > NXP, Microchip, Kontron, CISCO, TTTe, NI, Ethercal, Relyum, ...
- → Good opportunities for actual proof testing over representative scenarios !


TSN: test cases

The use cases target the verification of bandwidth allocation and timing characteristics for mixed-criticality traffic in different configurations, considering:

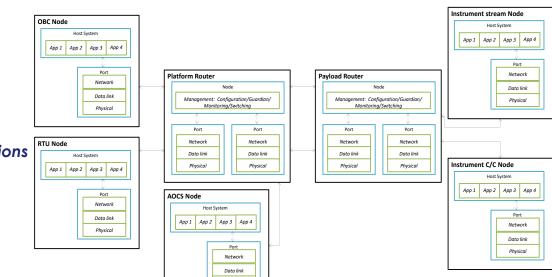
- Avionic equipment: On-Board Computer (OBC), Remote Terminal Unit (RTU) for: Guidance, Navigation and Control (GNC), Data Handling and Power Management.
- AOCS Sensors: Global Navigation Satellite System (GNSS), Coarse Sun Sensors (CSS), magnetometer (MGM), momentum wheel (MW), Gyroscope (GYR), Star-Tracker (STR)
- AOCS Actuators: magneto-torque (MGT)/magneto-torque bar (MTB), Reaction Wheel (RW), Reaction Control System (RCS), Solar Array Drive Mechanism (SADM), Antenna Deployment and Pointing Mechanism (ADPM), most of them being centralized through a Remote Terminal Unit (RTU)
- Power Conditioning & Distribution Unit (PCDU)
- > Storage like Solid State Mass Memory (SSMM)

Several points can be raised regarding the payloads:


- Standard payloads with only command/control interactions with the platform: this usecase require low PF/PL coupling and is not the most suited for testing TSN capabilities
- High accuracy payload units in-the-loop: Cameras, FGS: payloads where are encountered both signals for the active AOCS/GNC loops in high QoS mode and signals for Ground post-processing without realtime constraints

TSN: test cases (cont'd)

The minimal configuration to represent those use-cases would be as follows:


- > One router for the platform network,
- > One router for the payload network,
- > One node for the OBC,
- One node for an instrument data generator, potentially up to ~kHz frequency
- One node for an instrument-in-the-loop command & controlling emulation,
- > One node for an RTU emulation
- At least one node for AOCS units (at least the Star Tracker with raw data generation at 10Hz)

TSN: test targets

The demonstrators will enable testing:

- > Network latency & jitter
- > Network synchronisation
- > Network mixed-criticality response
- > Deterministic service timing characteristics
- > QoS management
- > Configuration & management of modes transitions
- > Network time stamping
- > Failre isolation
- > Failure impact
- > Configuration change duration
- > Available health status & monitoring parameters
- > Effective data rate
- > Congestion isolation
- > Packet retransmission

Physical

>

Thanks for your attention

Questions?

8

