ADCSS 2019

An IPCORE for Deterministic Ethernet via Time Sensitive Networking (TSN) light implementation: challenges and opportunities

© GMV, 2019 Property of GMV

All rights reserved

UNCLASSIFIED INFORMATION

El presente documento está clasificado como "GMV-XXXX". Esta clasificación habilita a su receptor al uso de la información contenida en el documento para los fines para los que la empresa la ha facilitado o, en su caso, a lo acordado contractualmente en relación al intercambio de información entre las partes, y ello sin perjuicio del cumplimiento de la normativa sobre propiedad intelectual y sobre protección de datos de carácter personal.

Lorenzo Cercós (GMV) Project Manager Luis Medina (7Sol) Technical Responsible

I N T R O

gmv°

INTRO

GETDEN Activity (GMV)

- MIURA 1 Mission (GMV)
- MIURA 1 Avionics Main Elements (GMV)
- TSN Development (7Sol)
- Summary and Conclusion (GMV)

GETDEN Context

GETDEN Context

<u>Goals:</u>

- The goal of ITI "Gigabit Ethernet TSN DEtermnisitc Network (GETDEN)" activity is to provide a low-cost yet space-grade data bus solution based on open-source, already identified and implemented in other non-space domains.
- Requirements for adapting terrestrial TSN technology for space on-board avionics application based on COTS (focused on microlaunchers)
- Traceability to SAVOIR requirements
- IP cores for HW (HDL) implementation of Gigabit TSN protocol
- Drivers based on RTEMS
- Testing an on-board network, representative of microlauncher (Zynq SoC ARM processors)
- A technology roadmap for increase TRL and enable the adaption of Gigabit TSN solution as onboard data bus for microlauncher and other spacecraft

towards

→ Developer (Prime)

SENEN Solutions

 \rightarrow Inventor and Developer (Subcontractor)

<u>g</u>mv"

Context and I Mission

MIURA1 Context and Mission

MIURA1 Goals:

- Provide microgravity environment to a payload
- Flying Test bed for MIURA 5 technology

Launcher Main Characteristics:

- 1 stage, 1 engine KeroLOX (30kN)
- 12 m height, 0.7m diameter
- Recoverable and reusable

Main Mission Figures:

- MECO Time:
- Microgravity Time: ~3 minutes
- Payload:
- Apogee Altitude:
- Total Flight Time
- Launch Site:

- ~2 minutes e: ~3 minutes 100Kg
 - ~120Km
 - ~600 s
 - "El Arenosillo" Southern Spain

MIURA 1

CONSORTIUM:

Development & Qualification

Avionics Main Elements

- GMV is in charge of the development and qualification of complete avionics:
 - Electrical Power Subsystem, containing the storage, conditioning and distribution functions
 - Data Handling, for executing the mission and collect data from sensors, actuate valves and format telemetry
 - Antenna systems, for the different RF links
 - Flight Termination System for Safety
 - GNC subsystem, including GNC sensors and actuators
 - On-board Software (**OBSW**)
 - Payload management
 - Harness
- Avionics is **distributed** in nodes along the launcher, communicating via GEthernet bus with a Time Sensitive Network (**TSN**) light implementation:
 - OBC
 - ECU
 - Node1 & Node 2
 - Payload

MIURA 1 Avionics Development & Qualification Avionics Development

 Functional and performance validation of avionics elements (SW/HW) at GMV premises:

MIURA 1 Avionics Development & Qualification Avionics Qualification

- Environmental tests have been considered for qualification:
 - Random Vibrations Tests:
 - IMU $\rightarrow \checkmark$ Passed
 - OBC and ECU nodes $\rightarrow \checkmark$ Passed
 - Thermal Cycling Tests:
 - OBC node $\rightarrow \checkmark$ Passed
 - Thermal-Vacuum Tests:
 - ECU node $\rightarrow \checkmark$ Passed

GETDEN

Gigabit Ethernet TSN DEterminstic Network

A light TSN implementation for avionics

www.sevensols.com

GETDEN: Light TSN for Avionics

Zynq-7000 SoC

Oriented to space avionics:

- RTEMS 5.0
- C99 TSN drivers, API and firmware

Light implementation:

- Only the most relevant TSN standards:
 - Synchronization, Queueing, traffic shaping and frame preemption
- More than 40% FPGA resources & almost all CPU time available for on-platform user critical applications:
 - Real Time
 - Deterministic latency
 - Full synchronization

GETDEN: Light TSN for Avionics

Zynq-7000 SoC

FPGA Resources: 4 Ethernet ports

	VLAN + Redundancy	Dropper	TAS + Preemption	Redirector	Common Infrastructure (DMA, MAC switching, TSU,)	Z-7030 Resources	
lice Registers	4550	2090	3170	1490	12840	39%	
Slice LUT	4160	1120	1820	1800	10440	57%	
BRAM	3,5	0	20	9	12	53%	
DSP	8	34	0	0	0	13%	
MMCM + PLL	0	0	0	0	1	40%	
		-					

Essential ISN standards						
Standard	Area	Title				
IEEE 802.1AS	Timing & Synchronization	Enhancements and Performance Improvements				
IEEE 802.1Qbv	Forwarding and Queuing	Enhancements for Scheduled Traffic – Time-Aware Traffic Shaping				
IEEE 802.1Qbu & IEEE 802.3br	Forwarding and Queuing	Frame preemption and Interspersing Express Traffic				
IEEE 802.1Qca	Path Control and Reservation	Path Control and Reservation				
IEEE 802.1Qcc	Stream Reservation (SRP)	Enhancements and Performance Improvements				
IEEE 802.1Qci	Time Based Ingress Policing	Per-Stream Filtering and Policing				
IEEE 802.1CB	Seamless Redundancy	Frame Replication & elimination for Reliability				

GETDEN Architecture overview

Software components: RTEMS drivers and User API

UNCLASSIFIED INFORMATION

GETDEN Software components

- User API: Configuration of the TSN modules
 - VLAN: Traffic identification & tagging
 - TAS: Time-aware traffic shaping schedule
 - Seamless redundancy configuration
- gPTP cyclic executive
- Network drivers

RTEMS Network driver

RTEMS RTEMS RTEMS Custom Ethernet driver with TSN support Based on FreeBSD Network API Rx buffer refill Scatter-gather DMA support MDIO procedure **Buffer reception** Buffer transmission procedure HW Timestamping Support MDIO support for external PHY device Tx buffer clean Rx procedure procedure Rx Irq Tx Irq PHY DMA

...::

Synchronization Protocol: IEEE 802.1AS (gPTP)

UNCLASSIFIED INFORMATION

IEEE 802.1AS: gPTP (I)

- Synchronization accuracy < +/-50 ns span, supported by
 - PTP Hardware Clock: Local time reference storage and distribution
 - Hardware TimeStamp Unit

.....

- Common time knowledge for coordinated execution on distributed networks.
- Synchronization guaranteed for RTEMS executives and IPcores.
- Network driver to manage TSU and remote peer connectivity.Decoupled, C99 & 802.1AS compliant User API
 - gPTP cyclic executive:
 - Best Master Clock
 - Peer to Peer delay mechanism
 - Time distribution
 - Local time (PHC) management
 - Low CPU time consumption (<5%)

IEEE 802.1AS: gPTP (II)

TSN IP-core: IEEE 802.1Q & IEEE 802.1CB VLAN module

UNCLASSIFIED INFORMATION

VLAN & Seamless Redundancy Module

IEEE 802.1Q: Traffic differentiation and prioritization

VLAN	•	Time Sensitive Regular Ethernet traffics are translated into TSN streams. (Up to 16 rules)
translation	•	TSN Stream: VLAN_ID + VLAN_PRIO + MAC (dst/broadcast).

VLAN & Seamless Redundancy Module

IEEE 802.1CB: Frame Elimination and Replication for Reability (FRER)

- Seamless redundancy oriented to TSN streams
 - Zero-time switchover for most critical traffics
- GETDEN implements End-to-End FRER.

TSN IP-core: IEEE 802.1Qbv: Time Aware traffic Shaper IEEE 802.1Qbu & 802.3br: Frame Preemption

GETDEN: Time Aware traffic Shaper

Solutions

Performance measurements

UNCLASSIFIED INFORMATION

GETDEN: Performance & Setup

0

PRIO1+Video

Board 5

PC

PRIO2

- Prioritized & Best effort traffic Prioritized: 10 pk/ms, 400 bytes/pk Best effort: 20 Mbps
- Deterministic latency < 1us
- Time synchronization $< \pm 50$ ns
- Three hops

40

30

20

PRIO2+Video

Video

Std Dev: 20 ns

Board 1

Board 2

0

PRIO2

2

PRIO2+Video

0 Board 3 1

0

Board 4

PRIO1+PRIO2

2

GETDEN: Interoperability

• Tests with 3rd party gPTP & TSN stations

- IEEE 802.1Q & Qbu: TSN stream communication.
- IEEE 802.1AS: Master & Slave configuration.
- IEEE 802.3br: Frame preemption

Innovasic – Analog Devices TSN development kit Arista Switch

National Instruments IC-3173

Summary and Conclusion

Summary and Conclusion Summary and Conclusion

- GMV is in charge of the development and qualification of complete MIURA1 avionics
- MIURA 1 avionics will be up-scaled to MIURA 5 Microlauncher
- COTS have been used to reduce costs of avionics development
- Functional and performance tests have been performed at FES, SVF and ATB level at GMV premises
- Environmental tests have been successfully passed for qualification

Summary and Conclusion Challenges and Oportunities

- Once again, 'common' understanding of requirements has proved to be an important step in a new development (in particular when actors are coming from different background)
- Identification of the key aspects of TSN Standards suite to implement a 'light' version
- Adaptation to RTEMS drivers
- Verification and Validation thru proper test cases identification and usage of representative traffic (interesting demo just after launch break! Room NC321 in Erasmus, 15:00)
- Co-engineering of teams with different backgrounds improving results taking advantages of differences
- Technological demonstration that such a solution can be a good candidate for future communications bus in space applications

THANK YOU

🐠 BLOG f ະ 🖇 🛗 in ሕ

Auron Mar

Lorenzo Cercós (GMV) Project Manager Icercos@gmv.com

