
1

Leveraging the
Openness and Modularity
of RISC-V in Space

Stefano Di Mascio

13th ESA Workshop on Avionics, Data, Control and
Software Systems (ADCSS)

2

Outline

•The RISC-V ISA
– RISC-V in Space

•RISC-V processors
– General Purpose processors
– From Microcontrollers to Manycore Processors
– Vector Processors

•Conclusion

3

Why the RISC-V ISA?
• The Instruction Set Architecture of a processor is its interface between HW

and SW
– It enable the use of certain software ecosystem and toolchain

• You want an ISA already used by many people → Large user base
• If you use a proprietary ISA you have to pay royalties → Openness

• ISAs can ‘overspecify’. For instance:
– Design a complicated ISA to optimize certain aspects of processors
– Functionalities not fully exploited by users or not effective for some applications
– Implementations are more complicated than those based on simpler ISAs

• Keep the ISA simple and ‘general’, complicate the microarchitecture to meet
the required level of performance

• What do we do when more complicate instructions are actually needed?
– A simple ‘base’ ISA and optional ISA extensions with the optimized instructions that

are relevant to your application → Modularity
• RISC-V offers modularity, openness and an already existing user base

4

Why RISC-V in Space? (1)
• Openness (not a novelty for space):

– Of the ISA: SPARC V8 is also an open ISA
• SPARC V8 based on the SPARC V7 (Sun Microsystems),

RISC-V started from scratch and discussed by working groups
– Of the implementations: code of LEON available to the public

• Already a relatively large user base for terrestrial applications (quite a novelty)
– Toolchain and software ecosystem available (GCC, GDB, OSs, etc.)
– Already (RISC-V project started in 2010, first open-source core in 2014)

50 IP cores available listed in https://riscv.org/risc-v-cores/
• Of which 30 are open-source
• Of which 19 are in ‘industry-standard’ HDLs (SystemVerilog,Verilog,VHDL)
• Of which 4 are in VHDL

– «Spin-in» and exploiting synergies possible
– Potentially even more popular in the future

• Interesting mix of academia, start-ups, and big players working on RISC-V

https://riscv.org/risc-v-cores/

5

Why RISC-V in Space? (2)

• E.g. RV64IMAFDC (aka RV64GC) with MSU for General Purpose processors
• RQ: How can we use the modularity of RISC-V in satellite data systems?

– Which ISA subsets? And with what kind of microarchitectures?
• Avoid non-standard custom extension: “A modified ISA is a new ISA”

– Which level of performance? And how to measure them?

(Some of the) Standard Unprivileged Ext.

M Integer Multiplication and Division

A Atomics

F Single-Precision Floating-Point

D Double-Precision Floating-Point

B Bit Manipulation

C 16-bit Compressed Instructions

P Packed-SIMD Extensions

V General Vector Extensions

Base Integer Instruction Set

RV32I 32-bit integer

RV32E 32-bit integer (reduced)

RV64I 64-bit integer

RV128I aka “why not planning ahead?”

Modularity: fit for a wide range of applications (big novelty)
• 1 Base + Standard Unprivileged Extensions + Privilege modes

Privilege modes

M Machine Mode (mandatory)

S Supervisor Mode

U User Mode

6

General Purpose (GP) Processors
Many processors are General
Purpose: to run non-compute-
intensive workloads on Unix-like OSs
• HW support for virtual memory

management
• Mainly best-effort basis
• Payload processors: many tasks,

helping with the reuse of SW
modules

• To increase performance:
– Pipelining: increase max. frequency
– Instruction-level parallelism (ILP): more instructions simultaneously
– Speculation: i.e. assume an outcome and continue the execution instead of waiting
– Use more complex scheduling of instructions: from in order to out of order
– Processor-Level Parallelism (PLP), i.e. going multicore with Symmetric MultiProcessing

• The efficacy eventually saturates: find the right trade-off for the target performance and
acceptable area (and power) efficiency.

7

RISC-V profiles: GP processors

Profile Ref. Implement. ISA subset (opt.) Microarch. PLP Benchmark Target Perf.

GP-LE Rocket, ARM1176JZF-S
LEON3/4

RV64GC SI, IO 1-4 CoreMark 2-6 CM/MHz

GP-ME ARM Cortex-A7
ARM Cortex-A8

RV64GC(P) 2-w, IO 1-4 CoreMark 3-9 CM/MHz

GP-HE BOOM (2-w)
ARM Cortex-A9

RV64GC 2-w, OoO 1-4 CoreMark 4-12 CM/MHz

GP-VHE BOOM (4-w)
ARM Cortex-A15

RV64GC(P) 4-w, OoO 1-4 CoreMark 5-15 CM/MHz

• Identify the features that impact the
most on performance and
power/area efficiency

• Define profiles for different target
performance (technology
independence)
– Some extrapolations (e.g. doesn’t

measure the increase in
maximum frequency, etc..).

8

While a single-core RV64GC (GP-LE-1) requires
185 kGE, there are RV32EC implementations
that require only around 10 kGE

RISC-V Microcontrollers
Remote Terminal Units are often
present to implement control loops
locally
• Usually GP processors are

deemed too large, power hungry
and not time-deterministic enough

• RISC-V allows
– Use of subsets (RV32E) for

low-area implementations
• -25% compared to RV32I
• -40% if we remove also M

– Compressed instructions (C) to
reduce memory requirements
• -30% code size (SPEC 2006)

– Bit manipulation (B): reduces
code size and speeds up control
operations

9

High End impl. (HE) employ
(non-standard in the case
of RI5CY) Single Instruction
Multiple Data (SIMD)
instructions to accelerate
compute-intensive
workloads

Mid End impl. (ME):
control applications
requiring a bit more
calculations (e.g.
AOCS)

Low-End
impl. (LE)
for “pure
control”
applications
(e.g. latchup
protection
of COTS)

Benchmarking RISC-V microcontrollers

• ME are the most area-efficient
for CoreMark.

• LE are the most area-efficient
for “pure control” applications

• HE are the most area-efficient for integer convolutions.
– Usign CoreMark to benchmark a processor for

2D-convolutions leads to a suboptimal choice

10

On-Board Decision-Making
• Do we need compute-intensive workloads on-board?

– On-board encryption (security)
– On-board data compression
– On-board Digital Signal Processing (could be done also on ground)
– On-board decision-making

• Simplest application for On-board Decision-Making: data reduction
– Decision to be taken: whether to send or not a certain image to Earth

• Downlink is a typical bottleneck of space data systems
• Hours to days to downlink an image from a CubeSat to the ground
• Storage space on CubeSats is typically very limited

• Many (creative) proposals from academia require on-board decision-making
– Autonomous exploration (also overcomes latency of remote operations)
– Active debris removal by vision-based navigation
– Autonomous satellite swarms
– Asteroid mining

11

From Images to Decisions
• In order to take decisions, images are ranked according to certain features, typically

employing Convolutional Neural Networks (CNNs)
– Composed by several layers that progressively abstract the data contained in the image

• Discrete convolutions are matrix operations and they are very compute-intensive
• Example for Layer 1:

– Input image: 128x128 pixels (134x134 with padding) x 3 (R,G,B) Double-Precision
(DP) elements

– Kernel: 64 (filters) x 7x7x3 (coefficients in a filter) DP elements
– Kernel size x 2 (Multiplication+Addition) operations per pixel: 338 MFLOP (DP)
– Read image (421 KiB) and filters coefficients (73.5 KiB), write result (8.8 MiB):

memory traffic is 9.2 MiB
– Operational intensity (OI): 35 DP-FLOP/B

12

Increasing performance for compute-intensive
workloads
Runtime determined by the number of FLOPS
• Maximum Theoretical Perfomance (MTP) in terms

of FLOP/cc
– Independent from ILP, speculation, caching, etc.

• To increase MTP, different approaches required:
1. A single-core processor with a single FPU can

achieve only up to 1 FLOP/cc
2. Introduce Fused Multiply-Add and Fused

Multiply-Accumulate (FMA) instructions
(e.g. z ← 𝑥𝑥 ∗ 𝑦𝑦 + 𝑧𝑧), MTP → 2 FLOP/cc

3. Replicate registers and FMA units to increase
the Data-Level Parallelism (DLP)
• With 4 FMAs, MTP → 8 FLOP/cc

4. Replicate processing cores
• With PLP=8, then MTP → 64 FLOP/cc

13

Roofline Model

• (Some) Benchmarks:
– DAXPY: 𝑦𝑦 ← 𝛼𝛼𝑥𝑥 + 𝑦𝑦 (x and y vectors of length n, 𝛼𝛼 scalar)

• OI=1/12 DP-FLOPS, heavily memory-bound
– DGEMM: C ← 𝛼𝛼𝛼𝛼 × 𝐵𝐵 + 𝛽𝛽𝛽𝛽 (A, B and C n×n matrices; 𝛼𝛼 and 𝛽𝛽 scalars)

• OI proportional to n, for large n heavily compute-bound
• Performance are not ideal because the actual memory BW depends on:

– Can the processor issue instructions fast enough to keep the FMAs busy all the time?
– Memory hierarchy: does the data fit in the L1 cache? In the L2? Reads from DRAM?

• Horizontal line: MTP
• Diagonal line: peak memory

bandwidth (BW)
• Classifies applications in

memory or compute-bound
– Compute-bound can be sped up

with more DLP and PLP

Memory-bound Compute-bound

14

RISC-V profiles: from microcontrollers to
manycore processors
Profile Ref. Impl. ISA subset

(opt)
Microarc. PLP Benchmark Target Perf.

uC-LE Zero-riscy RV32E(M)C 2-3 st., SI, IO 1 Control Code 1 CM/MHz

uC-ME Micro-riscy
Cortex-M0(+)

RV32IMC 2-3 st., SI, IO 1 Coremark 2.4 CM/MHz

uC-HE
(A-SC-LE)

RI5CY
Cortex-M3/M4

RV32IMCP(F) 3-5 st., SI, IO 1 Int. Kernels 1 OP/cc

A-MC-LE PULP RV32IMCP(F) 3-5 st., SI, IO 8-32 Int. Kernels 4–16 OP/cc

A-MC-ME Epiphany-IV RV32IMCP(F) 3-5 st., SI, IO 64-256 Int. Kernels 32-128 OP/cc

A-MC-HE Epiphany-V RV32IMCP(F) 3-5 st., SI, IO 512-1024 Int. Kernels 256-512 OP/cc

Packed-SIMD proposal for floating point operations dropped, only for fixed point

15

1: Load scalar
2: Set maximum vector length possible (HW)
3: Load (part of) vector x
4: Load (part of) vector y
4: Length-agnostic scalar-vector FMA instr.
5: Store result
6: Decrease/increase counters
7: If not done, jump to row 2

1: Load scalar
2: Determine maximum length usable (SW)
3: Jump to routine with the length found
…
i+1: Replicate scalar in SIMD registers
i+2: Load (part of) vector x
i+3: Load (part of) vector y
i+4: Length-dependent array FMA instr.
i+5: Store result
i+6: Decrease/increase counters
i+7: If not done, jump to row 2
…

Is there anything better than SIMD?
• Most DLP solutions on the market are SIMD

– Easy to implement in HW
– Encode DLP in the instruction

• Portability is affected
– High ‘bookkeeping’ overhead

• Vector processors are the opposite:
– Code runs always at the max. DLP possible
– Hardware is more complex
– Proven more efficient in late 70’s

supercomputers
– CMOS scaling made simpler solutions

preferable
• Renovated interest with the end of Moore’s Law

– ARM released a vector ext. for ARMv8-A
• Next Fujitsu’s supercomputer

– RISC-V Vector ext. (V) is one of the most
anticipated extensions

DAXPY:

Vector processor

𝑦𝑦 ← 𝛼𝛼𝛼𝛼 + 𝑦𝑦
Packed-SIMD

16

RISC-V Vector Processors

• The RISC-V V ext. adds:
– Vector Register File (32x64xlanes b):

• Configurable number of element of
configurable length

– Integer, Floating and Fixed-Point
operations (also FMA)
• 3 vectors, 2 vectors and a scalar, etc.
• Other instructions to deal with vectors

• Typically implemented replicating
identical lanes
– E.g. 1 FMA and 1 ALU per lane
– Operate in lockstep (simple control)
– Good scalability (at least up to 16 lanes)

Platform GP+FMA
(PLP=4)

A-M-LE
(PLP=8)

GPU
Mobile

GPU
Desktop

RVV SC
(16 lanes)

MTP [DP-FLOP/cc] 8 64 365 (SP) 2k 32

DGEMM Eff. 75% 30-70% 56% (SGEMM) 60-80% >90%

17

Conclusion
• RISC-V is an open and modular ISA with already a relatively

large user base
– In this presentation we explored its potentialities, from tiny microcontrollers

to high-performance processors for AI

• Other research questions to be answered:
– How to increase performance, power and area efficiency of RISC-V

processors to meet stringent requirements in satellite data systems?
– Technology readiness: How to bring novel high-performance architectures

from terrestrial applications to (at least) radiation-tolerant components?

• More (and references) in: S. Di Mascio et. al, “Leveraging the
Openness and Modularity of RISC-V in Space”, Journal of
Aerospace Information Systems, Volume 16, Issue 11, 2019

• Thanks to Cobham Gaisler and ESA

18

Questions?

Thank you for your attention!

	Leveraging the Openness and Modularity of RISC-V in Space
	Outline
	Why the RISC-V ISA?
	Why RISC-V in Space? (1)
	Why RISC-V in Space? (2)
	General Purpose (GP) Processors
	RISC-V profiles: GP processors
	RISC-V Microcontrollers
	Benchmarking RISC-V microcontrollers
	On-Board Decision-Making
	From Images to Decisions
	Increasing performance for compute-intensive workloads
	Roofline Model
	RISC-V profiles: from microcontrollers to manycore processors
	Is there anything better than SIMD?
	RISC-V Vector Processors
	Conclusion
	Thank you for your attention!

