
Introduction of Fault-Tolerant Concepts for
RISC-V in Space Applications (RV4S)
Final Presentation
ESA/ESTEC contract 4000123876/18/NL/CRS

1PUBLIC |

• A step towards evaluating the use of the RISC-V instruction set architecture (www.riscv.org) for
European space applications.

• The technical objectives of this work were:
• O1: Evaluate the current state of the RISC-V developments and how they can be applied to use in

European space projects
• O2: Select one existing processor implementation of RISC-V and integrate it to a contemporary

European space-grade system-on-chip
• O3: Evaluate radiation hardening techniques that should be applied to the selected microprocessor

IP to make it suitable for use in the harsh space environment
• O4: Create a demonstrator design implemented on field-programmable gate array (FPGA)

technology to allow software evaluation of the architecture
• The programmatic objective of the work is to lower the threshold for adoption of bleeding edge

commercial technology in the space sector and to provide a modern microprocessor alternative that
comes with the same level of openness as SPARC. This in turn will make software advancements on the
commercial side available to the space industry. The tangible end goal, the FPGA implementation, will
demonstrate the feasibility of merging existing space industry system-on-chip devices with an
implementation of a modern instruction set architecture.

• Budget: 175 kEUR
• Activity duration: 16 months
• TO: Roland Weigand
• Consortium: Cobham Gaisler (SE), Universitas Nebrissensis S.A. – ARIES Research Center (ES),

QinetiQ Space (BE)

2

Activity Overview

PUBLIC |

• Final presentation in two parts:
• Part 1 focusing on:

• O1: Evaluate the current state of the RISC-V developments and how they can be applied to use in
European space

• O2: Select one existing processor implementation of RISC-V and integrate it to a contemporary
European space-grade system-on-chip

• O4: Create a demonstrator design implemented on field-programmable gate array (FPGA)
technology to allow software evaluation of the architecture

• Part 2 focusing on:
• O3: Evaluate radiation hardening techniques that should be applied to the selected microprocessor

IP to make it suitable for use in the harsh space environment
• Followed by summary / conclusions

PUBLIC | 3

Activity Overview

4

Work Breakdown Structure

PUBLIC |

• Analysis results described in D1 Analysis of RISC-V: state
of the art and current implementations

• WP120 performed a survey of the landscape and then
performed a comparison of the RISC-V implementations:

• Rocket,
• lowRISC
• SHAKTI
• cores from the Pulp project
• BOOM

• It can be noted that the development of RISC-V cores moves very quickly and were
several new releases announced only in the time between PDR delivery and PDR.

• Xilinx KC105 development board was selected and procured for the FPGA demonstrator
platform.

5

Work Performed: Analysis
WP110/WP120/WP430

PUBLIC |

• Goal of work was to select a RISC-V implementation and adapt it for implementation in
representative SoC on FPGA board. Rocket chip implementation selected.

• Rocket can be considered a flagship project. It is an SoC generator implemented in Chisel
• A first implementation of the Rocket core in a GRLIB system had been delivered from CG to

ARIES during the Analysis phase.
• Described in D2 Technical Report: Proposed RISC-V Integration.

6

Work Performed: Integration
WP210/WP220/WP430

PUBLIC |

• Rocket-chip integrated with GRLIB and implemented on Xilinx KCU105 board

7

Work Performed: Integration
WP210/WP220/WP430

PUBLIC |

• A single RV64GC RISC-V Rocket core
• 16 KiB of L1 4-ways Instruction and Data Cache with SECDED
• Multiplication and Division Hardware Unit with Early Out
• SV39 compatible MMU
• Double-precision Floating Point Unit
• Up to 31 External Interrupt Lines
• Bus Error Unit (BEU) for Cache and Bus Errors
• AXI4 Master Interface for main memory
• AHB Master and Slave Interfaces for the AMBA 2.0 bus
• A RISC-V Debug Module with a DMI Interface

• Effort to harden design described in D3 Analysis of the hardening possibilities on
RISC-V.

• At a first stage, design was hardened by manually applying block-TMR
(modification of generated Verilog “netlist”).

• Variants created using manual/ad-hoc methods:
• Basic data path protection with TMR: TMR has

been applied at Tile level
• Ad-hoc technique: Efficient Protection of the

Register File using parity and sparing

• Activity also explored usage of DTMR applied by synthesis tools – which was
then the focus of the error injection campaign.

• Today’s presentation will cover DTMR area results and error injection
validation

8

Work Performed: Hardening
WP310/WP320

PUBLIC |

• End user evaluation consisted of:
1. Contribute with input based experience of integration of space processors

in space equipment and review and give feedback to analysis and trade-off
work.

2. Perform a project internal evaluation of the proposed demonstrator system
in terms of bus topology and selected peripherals.

3. Perform an end user evaluation of the demonstrator system. The focus of
the end user evaluation will be on the RISC-V processor implementation
(not on the selected peripherals).

9

Work performed: End User Evaluation
WP430

PUBLIC |

10

End User Evaluation: Test cases

PUBLIC |

Test
case ID

Characteristic Goal Note

1 Cross-compiler tool chain
compatibility

Be able to compile and execute:
i. Bare C Hello World application
ii. RTEMS Hello World application

Bare-C and RTEMS toolchains functional. No
GBD support. Bi-directional console
communication partially supported.

2 Software upload and
debugging capabilities

Be able to trace and step an
application.

Could not verify back tracing, functionality not
supported by demonstrator system.
Demonstrator system provided limited
debugging capabilities.

3 IU correlation against
known reference

Be able to execute functionally
correctly. Correlation will be verified
against the SPARC V8 and
MathWorks Simulink reference
platforms.

ESA IBDM Control Software application was
compiled and run successfully on the RISC-V
processor. There are numerical differences
between the outputs of RISC-V and LEON3 (on
the order of 0.2% of the value).

4 FPU correlation against
known reference

Be able to execute numerically
correctly. Correlation will be verified
against the ESA MLFS library.

ESA Mathematical Library for Flight Software
(MLFS): compiles and works.

5 Performance benchmarks Measure Dhrystone and Whetstone
performance data.

Executed Dhrystone, Whetstone and CoreMark

6 Bit error
injection/corrections

Be able to inject bit errors (SECDED)
and correct/report in the caches and
in the IU/FPU register file.

Not run. Interfaces not provided by Rocket.
Error injection work in activity focused on
configuration memory.

• Conclusions for FPGA demonstrator developed within this ITI activity:
• The supporting software tool chain and debugging capabilities require significant

improvements to be production ready. In summary the following features need to be
investigated:

• Missing processor reset signal from debugger
• Unexpected behaviour of some debugger commands
• Lack of instruction/AMBA bus tracing support
• Lack of full CSR support and missing documentation
• Missing exception handling/reporting in debugger
• Mismatch between hardware implementation pane and compiler for ulong/long

word sizes
• Differences observed in performance benchmarks ran by CG

• Note: Feedback above is for one specific implementation of Rocket, within a GRLIB
system used via GRMON3 extended with various Tcl scripts.

11

FPGA End User Evaluation: Conclusions

PUBLIC |

• Dhrystone: A Bare-C Dhrystone figure of 1.24 DMIPS/MHz and around 2 DMIPS/MHz for
• the RTEMS builds. Other sources report 1.72 DMIPS/MHz for Rocket.

• Dhrystone reported for corresponding LEON3/4 systems: 1.4 – 1.9 DMIPS/MHz
• CoreMark: 2.32 CoreMark/MHz. The CoreMark figure is in line with other results reported
• for Rocket [RD4]. LEON4 achieves 2.05 CoreMark/MHz

• Summary: Performance achieved between this Rocket implementation and general
LEON3/4 is in line. Variation between cores is as big as variation between configurations.

12

Performance results

PUBLIC |

• Comparing the resource usage of the Rocket core with Leon3FT can be relevant if
selecting between the two cores. From an implementation efficiency standpoint a
comparison is of limited use since the CPU micro-architectures are very different.

• Besides obvious things like the Rocket being a 64 bit RISC-V and LEON3 a 32 bit SPARCv8,
the Leon3FT only has static branch prediction.

• In our test builds, a Rocket without DTMR uses, compared to the Leon3FT, approximately
• Half again as many LUTs
• A third or so more REGs
• Well over twice the CARRY8s
• Nearly twice the BRAM
• About the same number of DSPs

• This for a configuration that should be reasonably close regarding cache etc.
• A large difference in LUT, REG and CARRY8 use is expected since the integer cores are so

very different. That the number of DSPs used is similar is unsurprising since that is mostly
in the FPU, which is not affected by the integer core differences.

• For the same cache sizes, the LEON implementation makes more efficient use of bRAM
(30 instances vs 56). bRAM usage for the Rocket has not been thoroughly investigated
and it has been assumed that this is due to the mapping to bRAMs and not necessarily a
requirement of the generic implementation.

13

Area comparison: LEON3FT vs Rocket

PUBLIC |

• In addition to the ad-hoc mitigation measures, DTMR was also evaluated. Examples of
results:

• “DTMR” means a build with DTMR added using Precision, but Vivado does the final steps.
DON’T_TOUCH attributes are added. mDTMR - triplication of cache RAM disabled. tDTMR-
using TCL DONT_TOUCH on whole triplication.

• “Prec” without TMR. “Vivado” means that Precision was not involved at all.

14

Area comparison: Effects of DTMR

PUBLIC |

15

Code Size: RISC-V vs SPARC
Text and data segments for Whetstone, Dhrystone and CoreMark

PUBLIC |

Filename RISC-V64G RISC-V64GC SPARC V8

text data bss text data bss text data bss

whetstone.o 1600 0 80 1346 0 80 1656 0 80
Dhrystone_main.
o 4211 0 10280 3879 0 10280 3781 0 10264
Dhrystone.o 508 0 0 326 0 0 396 0 16
Core_list_join.o 2160 0 0 1510 0 0 2116 0 0
Coremark_main.o 3556 24 0 3028 24 0 2994 12 0
Core_matrix.o 2348 0 0 1650 0 0 2060 0 0
Core_portme.o 96 8 28 80 8 28 140 8 28
Core_state.o 2053 0 0 1555 0 0 1921 0 0
Core_util.o 420 0 0 288 0 0 432 0 0
Linpack 5516 0 40 4356 0 40 5692 0 40

Options (relevant for code generation) used:
RV: -std=gnu99 -O2 -ffast-math -fno-common -fno-builtin-printf -mabi=lp64 -march=rv64g / rv64gc
SPARC: -std=gnu99 -O2 -ffast-math -fno-common -fno-builtin-printf -mcpu=leon3

Note: Benchmark performance differenced observed between G and GC but not further analysed.

• The following RISC-V ISA extensions are considered necessary to support space
software application development: (All extension met by Rocket
implementation)
• M-extension: integer numbers multiply and divide
• A-extension: read/write atomic operations for multi-processor systems
• F-extension: single-precision floating-point operations
• D-extension: double precision floating-point operations

• Current and near future ESA projects recommend system integrators to use the
RTEMS operating system. A pre-qualification test suite is currently available to
verify the compatibility with OBC hardware in which the GR712RC processor is
used. New processing solutions will require to extend RTEMS with SMP
capability. In case RTEMS remains to be used for space application software, an
update of the pre-qualification test suite will be also needed.

16

End User Evaluation Conclusions (0/2)
Use of processors implementing the RISC-V ISA in space applications

PUBLIC |

1. No major functional issues were identified during the end user evaluation activities.
2. RISC-V has a modern and extensible architecture, designed from the ground-up and

according nowadays principles: multi-core, hypervisor, MMU.
3. No more debug trouble of using IU register windows (SPARC architecture).
4. A reliable standardized debug interface (with GDB) is considered essential. The capability

to perform non-intrusive instruction tracing and local bus monitoring is considered an
advantage and will be helpful to troubleshoot multi-core device configurations.

5. Potential to apply application level space partitioning (hypervisor) and process/task level
space partitioning (MMU) capability.

6. Processing performance compared to existing space qualified processing solutions is
satisfactory for Integer Unit instructions and significantly improved for Floating Point
instructions:
1. Dhrystone benchmark: 1.36 DMIPS/MHz (QinetiQ Space Bare-C measurement)
2. Whetstone benchmark: 0.61 MWIPS/MHz (QinetiQ Space Bare-C measurement

using hard float)
3. CoreMark benchmark: 2.32 CoreMark/MHz (Cobham-Gaisler Bare-C measurement)

17

End User Evaluation Conclusions (1/2)
Use of processors implementing the RISC-V ISA in space applications

PUBLIC |

7. Bit manipulations are costly CPU cycles. Some frequently used function examples are
CRC computation, endianness bit swap, extract/expand, leading/trailing zero count,
minimum/maximum. These relatively simple operations are frequently used in low level
software (device drivers) to control I/O operations. The B-extension (bit manipulation
instructions) would significantly enhance the low level software processing capability in
future generation space processors. For more details see
(https://raw.githubusercontent.com/riscv/riscv-bitmanip/master/bitmanip-0.90.pdf

8. Vector or SIMD operations (mostly floating point) are considered beneficial to support
GNCC and other kinds of control loop applications.

9. The availability of a hypervisor (H-extension) is considered an important asset to enable
deployment of application software developed by different organizations or developed
using different criticality/quality level.

10. The G-Extensions (I + M + A + F +D) are considered essential.

18

End User Evaluation Conclusions (2/2)
Use of processors implementing the RISC-V ISA in space applications

PUBLIC |

https://raw.githubusercontent.com/riscv/riscv-bitmanip/master/bitmanip-0.90.pdf

• Following the analysis and integration work. ARIES, in parallel with the
QinetiQ Space end user evaluation, performed an error injection
campaign to evaluate the implemented hardening measures.

• Error injection campaign covered unprotected, manual triplication and
DTMR. Results presented today cover unprotected design and DTMR.

19

Work performed: Validation

PUBLIC |

Haga clic para
modificar el
estilo de texto
del patrón

Introduction of Fault-Tolerant Concepts for
RISC-V in Space Applications (RV4S)

Fault Injection Validation

ESA/ESTEC contract 4000123876/18/NL/CRS

Luis Alberto Aranda
Juan Antonio Maestro

21

Agenda

1. Motivation

2. Experimental set-up

3. Fault injection results

4. Conclusions

22

Agenda

1. Motivation

2. Experimental set-up

3. Fault injection results

4. Conclusions

23

Motivation

24

Motivation

• FPGAs error model is different from ASICs: configuration memory

• Alternatives to measure reliability of RISC-V:

- Radiate the device: high costs

- Fault injection emulation: high runtimes

• We have developed a tool (ACME -

http://www.nebrija.es/aries/acme.htm) to pinpoint fault injection in

specific areas of the RISC-V to reduce runtime

http://www.nebrija.es/aries/acme.htm

25

Agenda

1. Motivation

2. Experimental set-up

3. Fault injection results

4. Conclusions

26

Experimental set-up: Materials

KCU105 Evaluation board with
Kintex UltraScale FPGA

USB-to-UART PMOD

PC running MATLAB

27

Experimental set-up: Tools

• SEM IP: Xilinx Soft Error Mitigation IP Controller
- IP core developed by Xilinx

- Enables error injection in the configuration memory of the FPGA

• ACME: Automatic Configuration Memory Error-Injection Tool
- Configuration memory management tool developed by ARIES

- Provides the injection addresses for the SEM IP

• GRMON3
- Hardware monitor developed by Cobham Gaisler

- Enables debugging and execution of benchmarks in the RISC-V processor

28

Experimental set-up: Benchmarks

Four synthetic benchmarks have been used:

• Dhrystone: integer benchmark to measure computing performance

• Systest: integer benchmark. Checks the status of the processor

• Whetstone: floating point counterpart of the Dhrystone benchmark

• Linpack: floating point benchmark. Performs several linear algebra

operations

29

Experimental set-up: Overview

SEM IP
control

GRMON
control

Benchmark
output

30

Experimental set-up: Fault injection procedure

The MATLAB script executes the following steps for each benchmark:

1. A bit-flip is injected at a random frame address with the SEM IP

2. The processor is initialized and the selected benchmark executed

3. The result of the benchmark is received and logged in a text file

4. The injected error is corrected with the SEM IP

Steps are repeated until the desired number of configuration bits is tested

31

Agenda

1. Motivation

2. Experimental set-up

3. Fault injection results

4. Conclusions

32

Fault injection results: Classification

• The benchmark is executed in the absence of errors to compare this
golden result with the results obtained after the injection campaigns

• The following classification has been done:

- No error: the outcome of the benchmark matches the golden outcome

- Error: the outcome of the benchmark does not match the golden outcome

- Hang: there is no outcome or the execution of the benchmark never ends

33

Fault injection results: Unprotected RISC-V design

34

Fault injection results: DTMR-protected RISC-V design

35

Fault injection results: Fault tolerance comparison

• Probability of undetected errors in each design

These values do not consider the total number of configuration bits

36

Fault injection results: Fault tolerance comparison

• Undetected errors per unit of time (#U):

#𝑈𝑈 = 𝜙𝜙 · 𝜎𝜎 · 𝑁𝑁 · 𝑃𝑃
• Where:

𝜙𝜙 is the flux

𝜎𝜎 is the cross section of the UltraScale FPGA

N is the number of configuration bits

P the probability of undetected errors

37

Fault injection results: Fault tolerance comparison

• For example:

𝜙𝜙 = 1.00 · 107𝑐𝑐𝑚𝑚−2/𝑠𝑠−1 for the South Atlantic Anomaly

𝜎𝜎 = 1.87 · 10−15𝑐𝑐𝑚𝑚2/𝑏𝑏𝑏𝑏𝑏𝑏

𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈 = 6,665,452 and 𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 23,045,386 bits

P obtained from the previous table

38

Fault injection results: Fault tolerance comparison

• Number of undetected errors per unit of time for unprotected and DTMR

39

Agenda

1. Motivation

2. Experimental set-up

3. Fault injection results

4. Conclusions

40

Conclusions

• The unprotected design does not always fail:

- There are errors that modify the outcome of the benchmark and errors that halt

the processor

• The protected design does not always work:

- There are errors that halt the processor, but this percentage is negligible

• The type of benchmark executed (integer vs. floating point) affects the

percentage of errors obtained

• O1: Evaluate the current state of the RISC-V developments and how they can
be applied to use in European space
• Survey of RISC-V IPs performed, submitted as analysis report
• End user evaluation performed on reports and demonstrator developed within activity

• O2: Select one existing processor implementation of RISC-V and integrate it to a
contemporary European space-grade system-on-chip
• Rocket-chip selected and integrated in GRLIB SoC design

• O3: Evaluate radiation hardening techniques that should be applied to the
selected microprocessor IP to make it suitable for use in the harsh space
environment
• Manual TMR and Ad-hoc techniques implemented through modifications of the

generated Verilog code
• DTMR applied using Precision Hi-Rel on generated Verilog code
• Evaluated using error injection in FPGA configuration memory

• O4: Create a demonstrator design implemented on field-programmable gate
array (FPGA) technology to allow software evaluation of the architecture
• Design implemented on Xilinx KCU105 development board with XCKU040 FPGA
• Design validated and benchmark comparison with existing space processors.

11/14/2019 41

Summary of work performed

PUBLIC |

• Activity planning did not allow enough time for research on error mitigation
measures and error injection tests
• Development of FPGA prototype design was accelerated and delivered at PDR

instead of CDR
• Problems getting the DDR4 SDRAM controller up and running in the KCU105

design
• First versions of design used only on-chip memory while the DDR4 interface

implementation was debugged
• Mitigation techniques were considered difficult to apply on Rocket Chisel

description
• Modifications were instead performed on generated Verilog code

• Power failure of FPGA development platform after lapse of warranty period.
• Xilinx graciously provided additional board to support the ESA activity

• End user evaluation test case required GDB, which was lacking for RISC-V in
GRMON
• Introduce separate debug port and supply GBD connection through OpenOCD

11/14/2019 42

Problems Encountered

PUBLIC |

• RISC-V general conclusions:
• Survey of current RISC-V ecosystem performed.
• Extensions necessary to support space software application development identified.
• A number of instruction extensions are a key asset of RISC-V
• No register windows (as opposed to SPARC)
• Many (open-source) IPs available, but their stability (maturity?) is yet questionable.

• Demonstrator implementation performed in this project:
• Integration of RISC-V implementation into a typical space SoC architecture successful.
• FPGA demonstrator of specific RV implementation was limited in functionality but still provided

insights on use of RISC-V ISA and allowed comparisons with LEON implementations.
• Benchmark results comparable with existing LEON systems

• Radiation hardening with automatic "DTMR" methods considered successful, but huge overheads.
• 'Smart' hardening requires modifications, considered difficult to do with the Berkeley Chisel

implementation.
• Some insights gained on practicality of applying hardening measures on XCKU

• Conclusion applicable both to RISC-V implementation selection and radiation in general mitigation: An
IP core coded in native HDL is preferable.

11/14/2019 43

Conclusions

PUBLIC |

11/14/2019COBHAM PRIVATE | 44

Related Activies

PUBLIC | 45

H2020 De-RISC
Dependable Real-time Infrastructure for Safety-critical Computer

• European Commission Fast Track to Innovation
Initiative

• De-RISC is a project that will productize a
multi-core RISC-V system-on-chip from Cobham
Gaisler AB and to port the XtratuM hypervisor
from fentISS SL to that design, to create a
complete computer platform consisting of hardware
and software.

• Project partners:
• Cobham Gaisler AB
• FentISS SL
• Barcelona Supercomputing Center
• Thales Research and Technology

• More information: http://www.derisc-project.eu

This project has received funding from the European Union’s Horizon 2020 Research and
Innovation programme under Grant Agreement EIC-FTI 869945

www.derisc-project.eu

De-RISC – Dependable Real-time Infrastructure for Safety-critical Computer

http://www.derisc-project.eu

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Agenda
	Agenda
	Motivation
	Motivation
	Agenda
	Experimental set-up: Materials
	Experimental set-up: Tools
	Experimental set-up: Benchmarks
	Experimental set-up: Overview
	Experimental set-up: Fault injection procedure
	Agenda
	Fault injection results: Classification
	Fault injection results: Unprotected RISC-V design
	Fault injection results: DTMR-protected RISC-V design
	Fault injection results: Fault tolerance comparison
	Fault injection results: Fault tolerance comparison
	Fault injection results: Fault tolerance comparison
	Fault injection results: Fault tolerance comparison
	Agenda
	Conclusions
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	H2020 De-RISC

