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• A step towards evaluating the use of the RISC-V instruction set architecture (www.riscv.org) for 
European space applications.

• The technical objectives of this work were: 
• O1: Evaluate the current state of the RISC-V developments and how they can be applied to use in 

European space projects 
• O2: Select one existing processor implementation of RISC-V and integrate it to a contemporary 

European space-grade system-on-chip 
• O3: Evaluate radiation hardening techniques that should be applied to the selected microprocessor 

IP to make it suitable for use in the harsh space environment 
• O4: Create a demonstrator design implemented on field-programmable gate array (FPGA) 

technology to allow software evaluation of the architecture
• The programmatic objective of the work is to lower the threshold for adoption of bleeding edge 

commercial technology in the space sector and to provide a modern microprocessor alternative that 
comes with the same level of openness as SPARC. This in turn will make software advancements on the 
commercial side available to the space industry. The tangible end goal, the FPGA implementation, will 
demonstrate the feasibility of merging existing space industry system-on-chip devices with an 
implementation of a modern instruction set architecture.

• Budget: 175 kEUR
• Activity duration: 16 months
• TO: Roland Weigand
• Consortium: Cobham Gaisler (SE), Universitas Nebrissensis S.A. – ARIES Research Center (ES), 

QinetiQ Space (BE)
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Activity Overview
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• Final presentation in two parts:
• Part 1 focusing on:

• O1: Evaluate the current state of the RISC-V developments and how they can be applied to use in 
European space 

• O2: Select one existing processor implementation of RISC-V and integrate it to a contemporary 
European space-grade system-on-chip 

• O4: Create a demonstrator design implemented on field-programmable gate array (FPGA) 
technology to allow software evaluation of the architecture

• Part 2 focusing on:
• O3: Evaluate radiation hardening techniques that should be applied to the selected microprocessor 

IP to make it suitable for use in the harsh space environment 
• Followed by summary / conclusions
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Work Breakdown Structure
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• Analysis results described in D1 Analysis of RISC-V: state 
of the art and current implementations

• WP120 performed a survey of the landscape and then
performed a comparison of the RISC-V implementations: 

• Rocket, 
• lowRISC
• SHAKTI
• cores from the Pulp project
• BOOM

• It can be noted that the development of RISC-V cores moves very quickly and were 
several new releases announced only in the time between PDR delivery and PDR.

• Xilinx KC105 development board was selected and procured for the FPGA demonstrator 
platform. 
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Work Performed: Analysis
WP110/WP120/WP430
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• Goal of work was to select a RISC-V implementation and adapt it for implementation in 
representative SoC on FPGA board. Rocket chip implementation selected.

• Rocket can be considered a flagship project. It is an SoC generator implemented in Chisel
• A first implementation of the Rocket core in a GRLIB system had been delivered from CG to 

ARIES during the Analysis phase.
• Described in D2 Technical Report: Proposed RISC-V Integration.
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Work Performed: Integration
WP210/WP220/WP430
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• Rocket-chip integrated with GRLIB and implemented on Xilinx KCU105 board
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Work Performed: Integration
WP210/WP220/WP430
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• A single RV64GC RISC-V Rocket core
• 16 KiB of L1 4-ways Instruction and Data Cache with SECDED
• Multiplication and Division Hardware Unit with Early Out
• SV39 compatible MMU
• Double-precision Floating Point Unit
• Up to 31 External Interrupt Lines
• Bus Error Unit (BEU) for Cache and Bus Errors
• AXI4 Master Interface for main memory
• AHB Master and Slave Interfaces for the AMBA 2.0 bus
• A RISC-V Debug Module with a DMI Interface



• Effort to harden design described in D3 Analysis of the hardening possibilities on 
RISC-V.

• At a first stage, design was hardened by manually applying block-TMR 
(modification of generated Verilog “netlist”).

• Variants created using manual/ad-hoc methods:
• Basic data path protection with TMR: TMR has

been applied at Tile level
• Ad-hoc technique: Efficient Protection of the 

Register File using parity and sparing

• Activity also explored usage of DTMR applied by synthesis tools – which was 
then the focus of the error injection campaign.

• Today’s presentation will cover DTMR area results and error injection 
validation
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Work Performed: Hardening
WP310/WP320
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• End user evaluation consisted of:
1. Contribute with input based experience of integration of space processors 

in space equipment and review and give feedback to analysis and trade-off 
work. 

2. Perform a project internal evaluation of the proposed demonstrator system 
in terms of bus topology and selected peripherals.

3. Perform an end user evaluation of the demonstrator system. The focus of 
the end user evaluation will be on the RISC-V processor implementation 
(not on the selected peripherals).
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Work performed: End User Evaluation
WP430
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End User Evaluation: Test cases
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Test 
case ID

Characteristic Goal Note

1 Cross-compiler tool chain 
compatibility 

Be able to compile and execute: 
i. Bare C Hello World application 
ii. RTEMS Hello World application 

Bare-C and RTEMS toolchains functional. No 
GBD support. Bi-directional console 
communication partially supported.

2 Software upload and 
debugging capabilities 

Be able to trace and step an 
application. 

Could not verify back tracing, functionality not 
supported by demonstrator system. 
Demonstrator system provided limited 
debugging capabilities.

3 IU correlation against 
known reference

Be able to execute functionally 
correctly. Correlation will be verified 
against the SPARC V8 and 
MathWorks Simulink reference 
platforms.

ESA IBDM Control Software application was 
compiled and run successfully on the RISC-V 
processor. There are numerical differences 
between the outputs of RISC-V and LEON3 (on 
the order of 0.2% of the value).

4 FPU correlation against 
known reference

Be able to execute numerically 
correctly. Correlation will be verified 
against the ESA MLFS library.

ESA Mathematical Library for Flight Software 
(MLFS): compiles and works.

5 Performance benchmarks Measure Dhrystone and Whetstone 
performance data.

Executed Dhrystone, Whetstone and CoreMark

6 Bit error 
injection/corrections

Be able to inject bit errors (SECDED) 
and correct/report in the caches and 
in the IU/FPU register file.

Not run. Interfaces not provided by Rocket. 
Error injection work in activity focused on 
configuration memory.



• Conclusions for FPGA demonstrator developed within this ITI activity:
• The supporting software tool chain and debugging capabilities require significant 

improvements to be production ready. In summary the following features need to be 
investigated:

• Missing processor reset signal from debugger
• Unexpected behaviour of some debugger commands
• Lack of instruction/AMBA bus tracing support
• Lack of full CSR support and missing documentation
• Missing exception handling/reporting in debugger
• Mismatch between hardware implementation pane and compiler for ulong/long 

word sizes
• Differences observed in performance benchmarks ran by CG

• Note: Feedback above is for one specific implementation of Rocket, within a GRLIB 
system used via GRMON3 extended with various Tcl scripts.
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FPGA End User Evaluation: Conclusions
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• Dhrystone: A Bare-C Dhrystone figure of 1.24 DMIPS/MHz and around 2 DMIPS/MHz for
• the RTEMS builds. Other sources report 1.72 DMIPS/MHz for Rocket.

• Dhrystone reported for corresponding LEON3/4 systems: 1.4 – 1.9 DMIPS/MHz
• CoreMark: 2.32 CoreMark/MHz. The CoreMark figure is in line with other results reported
• for Rocket [RD4]. LEON4 achieves 2.05 CoreMark/MHz

• Summary: Performance achieved between this Rocket implementation and general 
LEON3/4 is in line. Variation between cores is as big as variation between configurations.
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Performance results
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• Comparing the resource usage of the Rocket core with Leon3FT can be relevant if 
selecting between the two cores. From an implementation efficiency standpoint a 
comparison is of limited use since the CPU micro-architectures are very different. 

• Besides obvious things like the Rocket being a 64 bit RISC-V and LEON3 a 32 bit SPARCv8, 
the Leon3FT only has static branch prediction.

• In our test builds, a Rocket without DTMR uses, compared to the Leon3FT, approximately
• Half again as many LUTs
• A third or so more REGs
• Well over twice the CARRY8s
• Nearly twice the BRAM
• About the same number of DSPs

• This for a configuration that should be reasonably close regarding cache etc.
• A large difference in LUT, REG and CARRY8 use is expected since the integer cores are so 

very different. That the number of DSPs used is similar is unsurprising since that is mostly 
in the FPU, which is not affected by the integer core differences.

• For the same cache sizes, the LEON implementation makes more efficient use of bRAM
(30 instances vs 56). bRAM usage for the Rocket has not been thoroughly investigated 
and it has been assumed that this is due to the mapping to bRAMs and not necessarily a 
requirement of the generic implementation.
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Area comparison: LEON3FT vs Rocket
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• In addition to the ad-hoc mitigation measures, DTMR was also evaluated. Examples of 
results:

• “DTMR” means a build with DTMR added using Precision, but Vivado does the final steps. 
DON’T_TOUCH attributes are added. mDTMR - triplication of cache RAM disabled. tDTMR-
using TCL DONT_TOUCH on whole triplication.

• “Prec” without TMR. “Vivado” means that Precision was not involved at all.
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Area comparison: Effects of DTMR
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Code Size: RISC-V vs SPARC
Text and data segments for Whetstone, Dhrystone and CoreMark
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Filename RISC-V64G RISC-V64GC SPARC V8

text data bss text data bss text data bss

whetstone.o 1600 0 80 1346 0 80 1656 0 80
Dhrystone_main.
o 4211 0 10280 3879 0 10280 3781 0 10264
Dhrystone.o 508 0 0 326 0 0 396 0 16
Core_list_join.o 2160 0 0 1510 0 0 2116 0 0
Coremark_main.o 3556 24 0 3028 24 0 2994 12 0
Core_matrix.o 2348 0 0 1650 0 0 2060 0 0
Core_portme.o 96 8 28 80 8 28 140 8 28
Core_state.o 2053 0 0 1555 0 0 1921 0 0
Core_util.o 420 0 0 288 0 0 432 0 0
Linpack 5516 0 40 4356 0 40 5692 0 40

Options (relevant for code generation) used:
RV:  -std=gnu99 -O2 -ffast-math -fno-common -fno-builtin-printf -mabi=lp64   -march=rv64g / rv64gc
SPARC: -std=gnu99 -O2 -ffast-math -fno-common -fno-builtin-printf -mcpu=leon3

Note: Benchmark performance differenced observed between G and GC but not further analysed.



• The following RISC-V ISA extensions are considered necessary to support space 
software application development: (All extension met by Rocket 
implementation)
• M-extension: integer numbers multiply and divide
• A-extension: read/write atomic operations for multi-processor systems
• F-extension: single-precision floating-point operations
• D-extension: double precision floating-point operations

• Current and near future ESA projects recommend system integrators to use the 
RTEMS operating system. A pre-qualification test suite is currently available to 
verify the compatibility with OBC hardware in which the GR712RC processor is 
used. New processing solutions will require to extend RTEMS with SMP 
capability. In case RTEMS remains to be used for space application software, an 
update of the pre-qualification test suite will be also needed.
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End User Evaluation Conclusions (0/2)
Use of processors implementing the RISC-V ISA in space applications
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1. No major functional issues were identified during the end user evaluation activities.
2. RISC-V has a modern and extensible architecture, designed from the ground-up and 

according nowadays principles: multi-core, hypervisor, MMU.
3. No more debug trouble of using IU register windows (SPARC architecture).
4. A reliable standardized debug interface (with GDB) is considered essential. The capability 

to perform non-intrusive instruction tracing and local bus monitoring is considered an 
advantage and will be helpful to troubleshoot multi-core device configurations.

5. Potential to apply application level space partitioning (hypervisor) and process/task level 
space partitioning (MMU) capability.

6. Processing performance compared to existing space qualified processing solutions is 
satisfactory for Integer Unit instructions and significantly improved for Floating Point 
instructions:
1. Dhrystone benchmark: 1.36 DMIPS/MHz (QinetiQ Space Bare-C measurement)
2. Whetstone benchmark: 0.61 MWIPS/MHz (QinetiQ Space Bare-C measurement 

using hard float)
3. CoreMark benchmark: 2.32 CoreMark/MHz (Cobham-Gaisler Bare-C measurement)
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End User Evaluation Conclusions (1/2)
Use of processors implementing the RISC-V ISA in space applications
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7. Bit manipulations are costly CPU cycles. Some frequently used function examples are 
CRC computation, endianness bit swap, extract/expand, leading/trailing zero count, 
minimum/maximum. These relatively simple operations are frequently used in low level 
software (device drivers) to control I/O operations. The B-extension (bit manipulation 
instructions) would significantly enhance the low level software processing capability in 
future generation space processors. For more details see 
(https://raw.githubusercontent.com/riscv/riscv-bitmanip/master/bitmanip-0.90.pdf

8. Vector or SIMD operations (mostly floating point) are considered beneficial to support 
GNCC and other kinds of control loop applications.

9. The availability of a hypervisor (H-extension) is considered an important asset to enable 
deployment of application software developed by different organizations or developed 
using different criticality/quality level.

10. The G-Extensions (I + M + A + F +D) are considered essential.
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End User Evaluation Conclusions (2/2)
Use of processors implementing the RISC-V ISA in space applications
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https://raw.githubusercontent.com/riscv/riscv-bitmanip/master/bitmanip-0.90.pdf


• Following the analysis and integration work. ARIES, in parallel with the 
QinetiQ Space end user evaluation, performed an error injection 
campaign to evaluate the implemented hardening measures.

• Error injection campaign covered unprotected, manual triplication and 
DTMR. Results presented today cover unprotected design and DTMR.
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Work performed: Validation
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Motivation

• FPGAs error model is different from ASICs: configuration memory

• Alternatives to measure reliability of RISC-V:

- Radiate the device: high costs

- Fault injection emulation: high runtimes

• We have developed a tool (ACME -

http://www.nebrija.es/aries/acme.htm) to pinpoint fault injection in 

specific areas of the RISC-V to reduce runtime

http://www.nebrija.es/aries/acme.htm
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Experimental set-up: Materials

KCU105 Evaluation board with 
Kintex UltraScale FPGA

USB-to-UART PMOD

PC running MATLAB
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Experimental set-up: Tools

• SEM IP: Xilinx Soft Error Mitigation IP Controller
- IP core developed by Xilinx

- Enables error injection in the configuration memory of the FPGA

• ACME: Automatic Configuration Memory Error-Injection Tool
- Configuration memory management tool developed by ARIES

- Provides the injection addresses for the SEM IP

• GRMON3
- Hardware monitor developed by Cobham Gaisler

- Enables debugging and execution of benchmarks in the RISC-V processor
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Experimental set-up: Benchmarks

Four synthetic benchmarks have been used:

• Dhrystone: integer benchmark to measure computing performance

• Systest: integer benchmark. Checks the status of the processor

• Whetstone: floating point counterpart of the Dhrystone benchmark

• Linpack: floating point benchmark. Performs several linear algebra 

operations
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Experimental set-up: Overview

SEM IP 
control

GRMON 
control

Benchmark 
output
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Experimental set-up: Fault injection procedure

The MATLAB script executes the following steps for each benchmark:

1. A bit-flip is injected at a random frame address with the SEM IP

2. The processor is initialized and the selected benchmark executed

3. The result of the benchmark is received and logged in a text file

4. The injected error is corrected with the SEM IP

Steps are repeated until the desired number of configuration bits is tested
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Fault injection results: Classification

• The benchmark is executed in the absence of errors to compare this 
golden result with the results obtained after the injection campaigns

• The following classification has been done:

- No error: the outcome of the benchmark matches the golden outcome

- Error: the outcome of the benchmark does not match the golden outcome

- Hang: there is no outcome or the execution of the benchmark never ends
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Fault injection results: Unprotected RISC-V design
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Fault injection results: DTMR-protected RISC-V design
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Fault injection results: Fault tolerance comparison

• Probability of undetected errors in each design

These values do not consider the total number of configuration bits
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Fault injection results: Fault tolerance comparison

• Undetected errors per unit of time (#U):

#𝑈𝑈 = 𝜙𝜙 · 𝜎𝜎 · 𝑁𝑁 · 𝑃𝑃
• Where:

𝜙𝜙 is the flux

𝜎𝜎 is the cross section of the UltraScale FPGA

N is the number of configuration bits

P the probability of undetected errors
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Fault injection results: Fault tolerance comparison

• For example:

𝜙𝜙 = 1.00 · 107𝑐𝑐𝑚𝑚−2/𝑠𝑠−1 for the South Atlantic Anomaly

𝜎𝜎 = 1.87 · 10−15𝑐𝑐𝑚𝑚2/𝑏𝑏𝑏𝑏𝑏𝑏

𝑁𝑁𝑈𝑈𝑈𝑈𝑈𝑈 = 6,665,452 and 𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 23,045,386 bits

P obtained from the previous table
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Fault injection results: Fault tolerance comparison

• Number of undetected errors per unit of time for unprotected and DTMR
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Conclusions

• The unprotected design does not always fail:

- There are errors that modify the outcome of the benchmark and errors that halt 

the processor

• The protected design does not always work:

- There are errors that halt the processor, but this percentage is negligible

• The type of benchmark executed (integer vs. floating point) affects the 

percentage of errors obtained



• O1: Evaluate the current state of the RISC-V developments and how they can 
be applied to use in European space
• Survey of RISC-V IPs performed, submitted as analysis report
• End user evaluation performed on reports and demonstrator developed within activity

• O2: Select one existing processor implementation of RISC-V and integrate it to a 
contemporary European space-grade system-on-chip
• Rocket-chip selected and integrated in GRLIB SoC design

• O3: Evaluate radiation hardening techniques that should be applied to the 
selected microprocessor IP to make it suitable for use in the harsh space 
environment
• Manual TMR and Ad-hoc techniques implemented through modifications of the 

generated Verilog code
• DTMR applied using Precision Hi-Rel on generated Verilog code
• Evaluated using error injection in FPGA configuration memory

• O4: Create a demonstrator design implemented on field-programmable gate 
array (FPGA) technology to allow software evaluation of the architecture
• Design implemented on Xilinx KCU105 development board with XCKU040 FPGA
• Design validated and benchmark comparison with existing space processors.
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Summary of work performed
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• Activity planning did not allow enough time for research on error mitigation 
measures and error injection tests
• Development of FPGA prototype design was accelerated and delivered at PDR 

instead of CDR
• Problems getting the DDR4 SDRAM controller up and running in the KCU105 

design
• First versions of design used only on-chip memory while the DDR4 interface 

implementation was debugged
• Mitigation techniques were considered difficult to apply on Rocket Chisel 

description
• Modifications were instead performed on generated Verilog code

• Power failure of FPGA development platform after lapse of warranty period.
• Xilinx graciously provided additional board to support the ESA activity

• End user evaluation test case required GDB, which was lacking for RISC-V in 
GRMON
• Introduce separate debug port and supply GBD connection through OpenOCD
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Problems Encountered
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• RISC-V general conclusions:
• Survey of current RISC-V ecosystem performed. 
• Extensions necessary to support space software application development identified.
• A number of instruction extensions are a key asset of RISC-V
• No register windows (as opposed to SPARC)
• Many (open-source) IPs available, but their stability (maturity?) is yet questionable.

• Demonstrator implementation performed in this project:
• Integration of RISC-V implementation into a typical space SoC architecture successful. 
• FPGA demonstrator of specific RV implementation was limited in functionality but still provided 

insights on use of RISC-V ISA and allowed comparisons with LEON implementations.
• Benchmark results comparable with existing LEON systems

• Radiation hardening with automatic "DTMR" methods considered successful, but huge overheads.
• 'Smart' hardening requires modifications, considered difficult to do with the Berkeley Chisel 

implementation.
• Some insights gained on practicality of applying hardening measures on XCKU

• Conclusion applicable both to RISC-V implementation selection and radiation in general mitigation: An 
IP core coded in native HDL is preferable.
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Conclusions
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Related Activies
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H2020 De-RISC
Dependable Real-time Infrastructure for Safety-critical Computer

• European Commission Fast Track to Innovation 
Initiative

• De-RISC is a project that will productize a 
multi-core RISC-V system-on-chip from Cobham 
Gaisler AB and to port the XtratuM hypervisor 
from fentISS SL to that design, to create a 
complete computer platform consisting of hardware 
and software.

• Project partners:
• Cobham Gaisler AB
• FentISS SL
• Barcelona Supercomputing Center
• Thales Research and Technology

• More information: http://www.derisc-project.eu

This project has received funding from the European Union’s Horizon 2020 Research and 
Innovation programme under Grant Agreement EIC-FTI 869945

www.derisc-project.eu

De-RISC – Dependable Real-time Infrastructure for Safety-critical Computer

http://www.derisc-project.eu
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