

MODEL-BASED SOFTWARE ENGINEERING at ESA

Maxime Perrotin – Andreas Jung – Marcel Verhoef | TEC-SW

ADCSS-2019

ESA UNCLASSIFIED - For Official Use

Outline

- 1.What is MBSE?
- 2. History : some background on modelling technologies
- 3.A vision for the future
- 4. Current state of the art (TASTE, OSRA)
- 5.Use in projects
- 6.Conclusion and the short-term future

ESA UNCLASSIFIED - For Official Use

•

What is MBSE ?

GOALS

Simplify the development and improve the quality of computer-based systems using

- Mature and well-defined languages and processes
- Tools to achieve correctness by construction

Make software engineering part of the System activities via MBSE

TARGETS

Real-time, distributed embedded systems (flight and ground)

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 3

· = ■ ► = = + ■ = ≔ = 1 ■ ■ = = = = ■ ■ ■ ■ = = = ₩ · · ·

MBSE : Models and Methodology covering...

SPECIFICATION

Architecture - Data - Dynamics

DESIGN AND CODE

Mix models with code

C, C++, Ada, Simulink, SDL, Micropython, VHDL, Modelica...

+

ESA UNCLASSIFIED - For Official Use

Use models to create a system

SIMULATION AND TESTING

...As early as possible...

GENERATION OF CODE, TESTS, AND DOCUMENTATION

On Proba-3, 300 pages of ICD:

Pre No 1	sent item is determi ACN Parameters type	ined by reporting service type and su	Type UInt8			
2	subType	Comment	Procent	Uints	Min Rite	May Dite
1	ackSuccess	Data in PUS(1,1) report - Telecommand Acceptance Report - Success.	type=1 AND subType=1	TM-PUS-1-1-AckSuccess	32	32
2	ackFailure	Data in PUS(1,2) report - Telecommand Acceptance Report - Failure.	type=1 AND subType=2	TM-PUS-1-2-AckFailure	40	40
~						
11	connectionReport	Data in PUS(17,2) report - Link Connection Report.	type=17 AND subType=2	TM-PUS-17-2-LinkConnectionReport	0	C
11	connectionReport	Connection Report.	type=17 AND subType=2	TM-PUS-17-2-LinkConnectionReport	0	

•

ESA UNCLASSIFIED - For Official Use

Before 2000

The "golden age" of formal methods, proof engines, visual modelling

Major commercial tools all included a model checker (Opengeode, Statemate, SDT)

ESA UNCLASSIFIED - For Official Use

Before 2000

But... the need was not understood

Code generation was hardly supported

Embedded platforms allowed only tiny applications to run (1 MHz CPU!)

Tools were expensive and model checkers required a lot of memory to run

ESA UNCLASSIFIED - For Official Use

Most tool vendors gave up and sold business

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 8

+

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = ₩ ■ ■ ■ ■ = = ₩ ■

In the 2000s, another attempt

One informal language to rule them all.

Syntax and semantics do not matter anymore

Methodology and process come with the tools, not with the language

"Cheap" tools and heavy marketing

ESA UNCLASSIFIED - For Official Use

What happened then...

It failed, too.

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 10

+

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = ₩ **→** ■ ■ **■ ■ ■** ₩ **→**

Since 2010: learn from the mistakes?

Make collaborative, open-source tools

Mix formal and informal languages

Address system and software altogether

Think long term

2010

Use on real, large scale projects

ESA UNCLASSIFIED - For Official Use

SvsMI

DSI

AAD

Maxime Perrotin | 14/11/2018 | Slide 11

. _ !! ▶ :: ■ + !! ■ '≦ _ !! !! _ : : : :: !! ▶ !! _ !! *

Objective: to have within 5 years a large adoption of MBSE in all new ESA projects

- Executable specifications (*state machines in the loop*)
- Data models (no more manual ICDs)
- Automatic code generation
- Updated ECSS standards to support this evolution....
- In parallel, R&D shall focus on more advanced use of models
 - Proof of system properties
 - Optimization of resources
 - AI to ease the production of the "right system"

ESA UNCLASSIFIED - For Official Use

Current state of the art

Explore languages, operating systems, avionics, compilers, ... based on the needs from projects.

Technology placeholder forming the state of the art in MBSE methods and tools

Define a software architecture and component model tailored for the space domain

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 13

TASTE TECHNOLOGY PLACEHOLDER

TASTE is putting together the ingredients to support technology exploration

It provides the bricks required by OSRA to disseminate MBSE to operational projects:

- Formal description techniques and modelling languagesArchitecture, data, and behaviour modelling
- Automation
- •Clear, unambiguous steps to reach the desired results

The TASTE/OSRA ecosystem favors free and open-source tools

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 14

· = ■ ▶ = = + ■ + ■ ≔ = = ■ ■ ■ ■ ■ ■ ■ ■ ■ ₩ · ··

Step 1: logical architecture (AADL)

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 15

*

Step 2: Define all data structures (ASN.1)

Q .		Pac	ketTypes.asn1 (PUS-C/ccsds @ MyProject) [master] - Qt Creator	• ×
<u>F</u> ile <u>E</u> di	t <u>B</u> uild <u>D</u> ebug <u>A</u> nalyze <u>T</u> ools <u>W</u> indow <u>B</u>	Help		
	Projects 🗢 🕈 🖽 🖃	$\langle \rangle$ of	PacketTypes.asn1*	8+
6	TimeWindow.asn1 *	19	1	4
	 I service-02 	2.0	-! You should have received a conv of the GNU General Public License	
Welcome	LogicalDevice.acn	21		
1	LogicalDevice.asn1	21	atong with this program. If not, see shttp://www.ghu.org/titenses//.	
Edit	PhysicalDevice.acn	22		
	PhysicalDevice.asn1	23		
<u> </u>	PUS-2-1.acn	24	PacketTypes DEFINITIONS AUTOMATIC TAGS::= BEGIN	
Design	PUS-2-1.ash1	25	EXPORTS ALL;	
	PUS-2-10 asn1	26	IMPORTS	
Dohug	PUS-2-11.acn	27	ApplicationProcess-ID FROM ApplicationProcess:	
Debug	PUS-2-11.asn1	28		
	PUS-2-12.acn	29	CCSDS-Packet {Packet-ID-Type PacketDataField-Type} ··= SEQUENCE	
Projects	PUS-2-12.asn1	20	r	
9	PUS-2-2.acn	21		
	PUS-2-2.asn1	31	packetversionNumber PacketversionNumbervalue,	
нер	PUS-2-4.acn	32	packet-ID Packet-ID-lype,	
	PUS-2-4.asn1	33	packetSequenceControl PacketSequenceControl,	
	PUS-2-5.acn	34	packetDataLength PacketDataLength,	
	PUS-2-5.ash1	35	packetDataField PacketDataField-Type	
	PUS-2-6.ach1	36		
	PUS-2-7.acn	37		
	PUS-2-7.asn1	3.8	PacketVersionNumberValue ··= NULL	
	PUS-2-8.acn	30		
	PUS-2-8.asn1	10	Parket TD (ParketTura Tura) AND SCOURNES	
	PUS-2-9.acn	40	Packet-ID {Packetiype-iype} ::= SEQUENCE	
	PUS-2-9.asn1	41		
	Registers.acn *	42	packetType PacketType-Type,	
	Open Documents 🔶 🕂 🖃	43	sS applicationProcess-ID <u>ApplicationProcess-ID</u>	
	BasicTypes.asn1	44	}	
	MessageType.acn	45		
	MessageType.asn1	46	SecondaryHeaderFlag ::= INTEGER (0 1)	
	MyModel.acn	47		
MyProject	PacketTypes.acn	4.8	PacketSequenceControl ··= SEQUENCE	
	PacketTypes.asn1*	10	r	
· •	Parameter.asn1	45		
Debug	Request.asn1	50	sequencer Lags NULL,	
	TC-Packet.acn TC-Packet.asn1	51	packetSequenceCountOrName INTEGER (0 16383)	
	TM-Packet.asn1	52	}	
		53		
		54	PacketDataLength ::= INTEGER (0 65535)	
>	*	4		+
	Cype to locate (Ctrl I Issues	2 Search	Results 3 Application Output 4 Compile Output 5 Debugger Console 8 Test Results 🗢 🔷 🛛	

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 16

Step 3: Model the behavior (SDL)

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 17

= 88 🛌 ## #88 🗯 🚝 #= 88 88 == 88 == 10 88 == 10 #8 == 10 #8 == 10 #8

Step 4: Model or code the algorithms (Simulink)

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 18

+

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = ₩ **■** ■ ■ **■ ■ ■** ₩ **■**

Step 5: Simulate and check properties

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 19

European Space Agency

+

Step 6: Generate or write test cases, and run them

@Scenario
def Exercise_user(queue): # queue is actually an instance of the Scenario class
'''user processing'''
<pre>queue.sendMsg('Switch_Power', 'power-on', lineNo=89)</pre>
time.sleep(0.5)
queue.sendMsg('Ping', 'FALSE', <i>lineNo</i> =86)
try:
<pre>queue.expectMsg('Pong', '1', lineNo=94, ignoreOther=False)</pre>
except TypeError as err:
time.sleep(1.5)
queue.sendMsg('Ping', 'FALSE', <i>lineNo</i> =86)
(msgId, val) = queue.getNextMsg(<i>timeout</i> =10)
if msgId == 'Pong':
print ("Something went wrong, Pong was not expected ")
return 0

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 20

1+1

Step 7: Deploy on a target

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 21

1+1

· = ■ ► = = + ■ = ≔ = 1 ■ = = = = ■ ■ ■ ■ ■ = = ** •

... Has someone ever used all (or any of) that?

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 22

+

· = ■ ▶ = = + ■ + ■ ≡ = 1 ■ ■ = = = = ₩ ■ ■ ■ ■ = = ₩ ₩ · •

ESA operational project using MBSE

NA.

N.A.

N.A.

96

8248

16

5.3.6.2 Telemetry

dataFieldHeader

3 packetErrorControl

2 sourceData

This module contains all types specific for ASW Telemetry.

	Tabi	13 - ASW-1	IM data structure definition.			
Structure representing a	I telemetry sent by CI ASW.					
1 packetHeader	Packet header as defined in [RD4].	always	TM-PacketHeader	N.A.	48	48
2 packetDataField	Packet data as defined in [RD4] with ASW specific contents.	always	ASW-TM-PacketDataField	N A.	112	8360
	Table 14 - AS	W-TM-Pack	etDataField data structure definition.			
ASW-TM-PacketDat						
Structure representing d	ata field of all telemetry generated by CI ASW.					
					100	

always TM-DataFieldHeader

always ASW-TM-SourceData

always Unt16

PUS-C implementation on the payload with TASTE

Code, Tests and 300 pages of ICD generated automatically

Flight and ground segments

ESA UNCLASSIFIED - For Official Use

Data field header as defined in [RD4].

Data specific for service report

represented by current TM. Checksum calculated as defined in

Annex A.2 (RD4)

Other (non-ESA) projects

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 24

1+1

Other (non-ESA) projects

Maxime Perrotin | 14/11/2018 | Slide 25

European Space Agency

+

ESA UNCLASSIFIED - For Official Use

Other (large) non-ESA projects

+

FONDAZIONE BRUNO KESSLER

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 26

The future

- The TASTE Steering Committee kick off meeting is this afternoon
 - with FBK, TAS, Airbus, DFKI, N7S, GMV
- The MB4SE working group

We shall all meet again for the

conference in September next year in

FSTFC

ESA UNCLASSIFIED - For Official Use

ESA UNCLASSIFIED - For Official Use

European

Outline – Questions?

1.What is MBSE ?

2. History : some background on modelling technologies

3.A vision for the future

4. Current state of the art (TASTE, OSRA)

5.Use in projects

6.Conclusion and the short-term future

The Assert Set of Tools for Engineering

European Space Agency

Conclusion

1.MBSE is triggering a huge interest for future space programmes

2.ESA has the vision and can ensure consistency and long-term support

3. Industry and community involvement are essential to continue

ESA UNCLASSIFIED - For Official Use

Maxime Perrotin | 14/11/2018 | Slide 29

•