STATE-OF-THE-ART & PERSPECTIVES OF AUTONOMY AND GNC/FDIR COUPLING

Brice Dellandrea

ADCSS - 14/11/2019 - ESTEC

Date : Ref : Ref Modele : 83230347-DOC-TAS-FR-006

© 2019 Thales Alenia Space

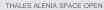
THALES ALENIA

TABLE OF CONTENTS

General considerations and state-of-the-art

Orbital scenarios involving highly autonomous features

Next challenges


What are the most promising avenues for autonomy in space?

Involved Technologies in TAS

Highlights on some technologies under developments

GENERAL CONSIDERATIONS - FDIR HIERARCHICAL ARCHITECTURE

Terral

Decession Asticu

SAOCS FDIR architecture is based on principles as described in the SAVOIR FDIR HANDBOOK

SAND GRADUAL RECOVERY ACTIONS

			Level	Recovery Action	Kelliarks	merarchy	
r			Ro	Unit-level internal recovery (transparent to upper levels; not always reported)	Associated to an internal failure in one unit or function, and recovered by internal functionality	Unit	
Set of commands	Unit reconfiguration controled by OBSW	←	Rı	Local reconfiguration (retry, then switch off or switch over)	Unit reconfiguration or re-initialization	Unit	
triggered PUS(19), (18) or (21)	AOCS units reconfiguration controled by OBSW Mission/phase dependant	←	R2	Functional chain mode change or reconfiguration	Requires changing the mode of a function, but it is possible to maintain the current satellite mode or to make a transition to another satellite mode different from the satellite safe-mode	Functional chain	
SVC: OBCP, TC sequence			R3	Computer re-initialization or recovery; possible satellite mode change	Includes, in particular, failures that need to be neutralized by the reconfiguration module; limited mission suspension	Functional chain or satellite	
		K	R4	Satellite safe mode triggering	Failures that cannot be recovered at lower levels and thus require a transition to SAT Safe Mode	Satellite	

© 2019 Thales Alenia Space

n 1

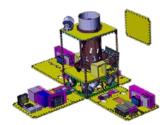
Hierarehr

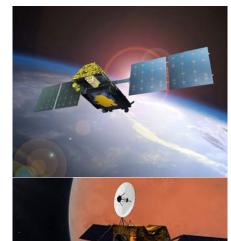
SUMMARY OF AUTONOMY IMPLEMENTATION HISTORY / LEVELS

SAutonomy has always been linked with the capability of detecting and correcting failures on-board (FDIR)

Simple S/C design, low computing capabilities, simple FDIR :

- **S**FOR ANY DETECTION OF FAILURE ON-BOARD:
 - Switch off the payload
 - SGo to safe mode (ensure solar power on solar panels, minimize fuel consumption)
- RECOVERY IS SIMPLE (AND RELIABLE!) BUT HAS THE DRAWBACK TO STOP THE MISSION FOR SOME TIME (HOURS/DAYS)
- SGROUND IS COMMANDING ALMOST EVERYTHING


More sophisticated FDIR in order to maintain the mission in case of "simple" failures :

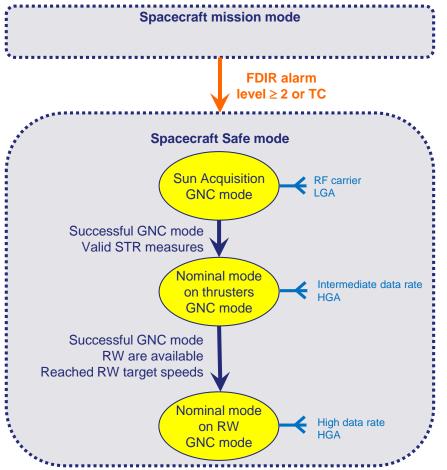

- FEW LEVELS (4) IN THE FDIR SUCH THAT FAILURES TYPICALLY AT EQUIPMENT LEVEL ARE MANAGED ON-BOARD (AUTONOMOUS SWITCH TO REDUNDANT UNITS): THIS IMPLEMENTED STEP IS ALREADY COSTLY IN TERMS OF DESIGN AND VALIDATION
- INTERMEDIATE MODES OF OPERATIONS IMPLEMENTED (DEGRADED POINTING TYPICALLY) IN ORDER TO SHORTEN THE RECOVERY IN NOMINAL CONDITIONS
- SMORE AUTOMATION OF SOME SEQUENCES OF EVENTS (E.G FOR CONSTELLATIONS AT SEPARATION)

Serving sophisticated FDIR/autonomy when it is required (typ. Interplanetary missions) :

SIMPLEMENTATION OF HOT REDUNDANCY (FAIL OPERATIONAL) FOR SOME CRITICAL PHASES

SEQUENCE OF EVENTS CAN BE VERY SOPHISTICATED, WITH EVENTUALLY NOT WELL KNOWN ENVIRONMENT

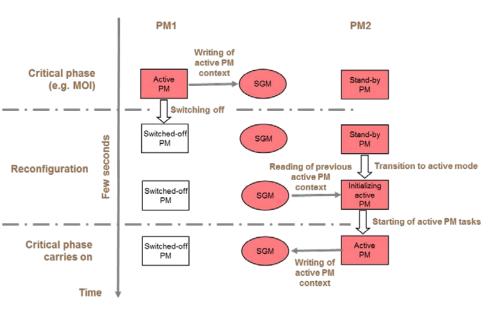
FDIR EXOMARS 2016 TRACE GAZ ORBITER (1/3)


Seneral ExoMars FDIR principles:

Failure detection level	Failed entity	Detection principle	Recovery action	
0	Inside unit	Built-in detection	Unit internal correction	
1	Unit failure localised without ambiguity	Detected by central SW, through acquisition of health statuses and critical parameters	Switchover to the backup unit	
2	Vital spacecraft functional chain performance anomaly	Detected by CSW, through function performance monitoring	Fail-Safe: Transition to spacecraft Safe mode Fail-Op: Use of all backup units, keeping the current spacecraft mode	
3	SMU failure	Watch dog	Fail-Safe: Transition to spacecraft Safe mode Fail-Op: Use of all backup units, keeping the current spacecraft mode	
4	Global spacecraft malfunction	Hardwired alarm	Fail-Safe: Transition to spacecraft Safe mode Fail-Op: Not applicable (level 4 inhibited in Fail-Op phases)	

FDIR EXOMARS 2016 TRACE GAZ ORBITER (2/3)

- SexoMars Fail-Safe strategy:
- In case of FDIR detection of level ≥ 2 or dedicated TC, the spacecraft mode transits to Safe.
- In Safe mode:
 - AOCS secures the spacecraft integrity with Sun oriented mode, sending RF carrier through Low Gain Antenna (LGA).
 - Then AOCS autonomously escalates to nominal mode on thrusters in order to allow the steerable High Gain Antenna (HGA) pointing to Earth.
 - If Reaction Wheels (RW) are available, AOCS autonomously escalates to nominal mode on RW in order to:
 - Increase accuracy of HGA pointing to Earth.
 - Save fuel.



FDIR EXOMARS 2016 TRACE GAZ ORBITER (3/3)

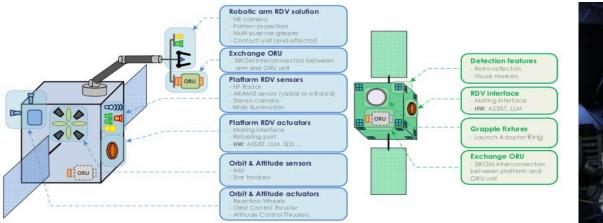
Secondars Fail-Op strategy:

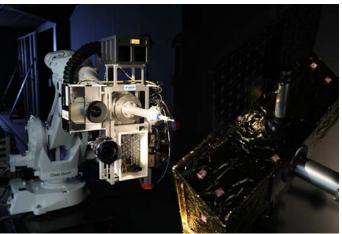
- In some critical mission phases, the current spacecraft mode is maintained whatever the failure level is, i.e. transition to Safe mode is forbidden.
- This is in particular the case in Mars Orbit Insertion (MOI) manoeuvre, where the engine thrust must not be interrupted for more than 10 s.
- The solution implemented on ExoMars is:
 - To power on all the backup avionics units in order to quickly take over in case of equipment failure.
 - To power on the backup Processor Module (PM), in order to save the boot and SW initialisation time.
 - If the nominal PM fails, the backup PM takes over the control of spacecraft, on the basis of context previously saved in Safe Guard Memory (SGM) by the nominal PM.

MAIN TRENDS FOR AUTONOMY IN SPACE SYSTEMS

Nigher level of autonomy is required for several different reasons :

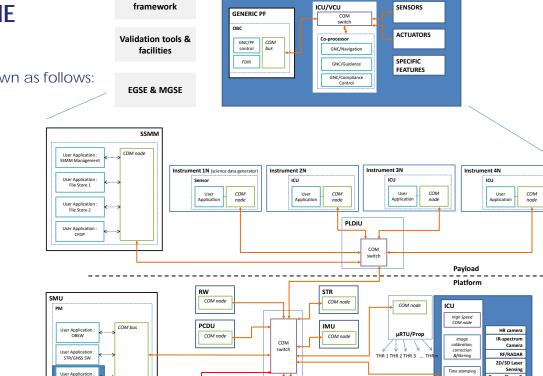
- Technology evolution (electrical propulsion): large gain of mass but orbit raising may take several months and is better managed through autonomous navigation and autonomous orbit maneuvers computed on-board
- New market (large constellations): separation sequences, orbit insertion and control maneuvers
- Clean Space/Servicing
- Increased reliability of interplanetary missions (in not well known environment): capacity of changing mission parameters in real time in order to make the mission safer or with a better accuracy thanks to shorter decision loops
- Add autonomous on-board capability to define the instrument acquisition plan and/or the TMI download plan (typically for Earth Observation satellites) such as to maximize the observation of areas of interest
- Increased autonomy on payload data quality & automated filtering (deletion of irrelevant or spoiled data)
- Predictive maintenance & advanced FDIR
- SFrom these needs the trends can be considered as follows :
- Autonomous maneuvring capability for all S/C in Earth orbit: orbit determination, path planning, advanced GNC
- Use of some instruments data in real time to upgrade the mission time-line without Ground intervention / autonomous RDV, autonomous landing & rover operations
- Work on Satellite HKTM and internal satellite data (complementary to the SDB) for a next step of FDIR capabilities


© 2019 Thales Alenia Space


THALES ALENIA SPACE OPEN

OVERVIEW OF SHORT-TERM HIGHLY AUTONOMOUS SYSTEMS _____ ROBOTIC MISSIONS & ON-ORBIT SERVICING

- Seneric building blocks to be instanciated per mission (rendez-vous, servicing, robotic exploration & science)
 - Specifics in terms of autonomy & FDIR
 - *High frequency control loops & decision making requires high autonomy (e.g.: CAM, path planning)
 - SAdvanced FDIR with maximisation of Fail-Op recoveries



ADVANCED GNC CHAIN IN THE AVIONICS ARCHITECTURE

🛰 The robotic chain for GNC can be broken down as follows:

Development

Robotics Product Building Blocks

SATHE ROBOTIC COMPUTING SYSTEM

SATHE ROBOTIC SENSORS

SITHE ROBOTIC ACTUATORS

SATHE GNC ALGORITHMIC CHAIN

Selative & Absolute Navigation

Suidance

- Subong-range guidance
- Inspection
- SVicinity maneuvers

S. Control

Local & composite control

Multi-DoF & flexible structures

SATHE DEVELOPMENT FRAMEWORK, EGSE & TEST LABS

ThalesAlenia¹⁰

Lossless

compression

Command/Cont

rol Manager

COM node

µRTU/Th

ראיז דאיז דאיז

Torque/Force &

Illumination

contact

sensing

devices

© 2019 Thales Alenia Space

GNC/PF Control

User Application

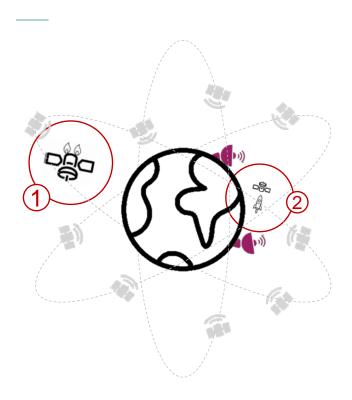
FDIR SW

OBT Function

THALES ALENIA SPACE OPEN

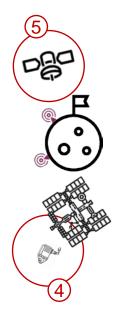
Specific

IOs


RTU

CSS

SADM


ADPM

OTHER EXAMPLE OF R&D FOR AUTONOMOUS GUIDANCE: MUSE4PNT

#	Mission	Potential sensors and technologies	
1	Autonomous orbit raising & station keeping	GNSS INS	
2	Post separation optimization	GNSS INS	
3	On-orbit servicing (LEO, GEO)	GNSS INS Radar Lidar Cameras Tactile sensors	
4	In-orbit servicing (lunar)	GNSS INS Radar Lidar Cameras Tactile sensors	
5	Lunar vicinities navigation	GNSS INS Cameras Lunar ground support Other spacecraft	

AI IN SATELLITE AVIONICS ?

From vision-based nav to control through the Data Management System

SORBITAL RENDEZ-VOUS REQUIRE MULTIPLE SENSORS FOR FUNCTIONAL REDUNDANCY (VIS-NAV; IR-NAV; LIDAR)

- SAI for image fusion at early stage in the processing chain
- SLong range (1500km to 50m): Al for bearing-only navigation (few pixels)
- Short range (<50m): Al for pose estimation (relative attitude and position)

RENDEZVOUS REQUIRES OPTIMAL TRAJECTORY PLANNING FOR SAFE CLOSE-RANGE MANOEUVERS AND DV OPTIMISATION TO TARGET INTERFACE

- SAI for long-range (kms down to 50m) trajectory planification
- SAI for close-range (<50m) trajectory optimization to target capture (DV minimization; safe approach)

SFDIR/MONITORING:

- SAI to identify dangers during the operation Analysis of trends in dynamics and health monitoring
- Al to provide higher availability of space systems

SCONTROL OF ACTUATORS (THRUSTERS, RW, ROBOTIC ARM, GRIPPER)

CONCLUSION

Autonomy is increasing in most of the space systems to:

- FACILITATE OPERATIONS
 SHORTEN THE REACTION LOOPS FOR MORE AMBITIOUS & EFFICIENT MISSIONS
- SENABLE NEW MISSIONS, IMPOSSIBLE OTHERWISE
- **SINCREASE AVAILABILITY OF SPACE SYSTEMS**

Suilding blocks developed in specific highly challenging contexts (e.g.: On-Orbit Servicing) can benefit other Product Lines!

Al is a way forward, it is not the only one

END OF PRESENTATION

Thank you for your attention

Questions?

29/05/2018 -DASIA 2018 Date : Ref : <reference> Ref Modele : 83230347-DOC-TAS-FR-006

© 2019 Thales Alenia Space

THALES ALENIA SPACE OPEN

