Autonomous Guidance for Electrical Orbit Raising ADCSS 2019

DEFENCE AND SPACE

Slim LOCOCHE^{ADS}, Kristen LAGADEC^{ADS}, Sven ERB^{ESA} 14 NOV 2019

Context and objectives of the study

CONTEXT

- ESA R&D (D/TEC) ARTES contract 4000120072/17/NL/EM
- running Q2.2017-Q1.2020
- contractor: Airbus Defense & Space FR

MOTIVATIONS

Context of Electrical Orbit-Raising

- for telecom platforms
- for large constellations in LEO

Repetitive and time consuming operations tasks during LEOP

- Duration of EOR scenarios (several months)
- Automation of tasks can decrease the cost of operations
- And reduce risk of operation bottlenecks (constellations)

Enabler = GNSS-based autonomous navigation in GTO/GEO

• e.g. GPS III and increased space service volume

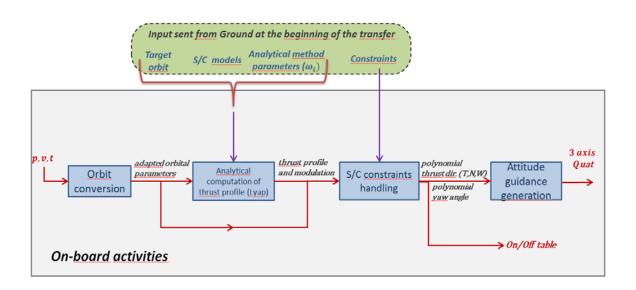
OBJECTIVES

Propose appropriate autonomous guidance solutions to be flown on the next generation of telecom platforms

- Development of on-board orbit/attitude guidance algorithms
 - For efficient and autonomous EOR
 - Explore hybrid analytical/numerical methods
 - Consider limited on-board processing power
- Validation of the SW implementation
 - On a representative processor in the loop setup
- Ground station and control center use reduction target > 80%
- Extension to LEO missions

On-board, full autonomy concept

Key characteristics


- The ground only uploads the target orbit + slot
- Thrust scenario & attitude profile entirely calculated on board
- Methods applicable to all kinds of transfer (LEO or GEO)

Decoupling assumption

- thrust profile optimized independently of attitude constraints
 allows simple optimizer for onboard implementation
- then attitude profile is computed to meet AOCS constraints
 - might cause deviations from optimum thrust profile
 - deviations from optimum thrust profile are only transient
 - errors are then compensated by closed loop
 - additional cost wrt. ground optimum is acceptable

Challenges

- On-board optimization shall be simple but "good enough" compared to ground based solutions (in terms of ΔV)
- AOCS and other S/C constraints must be met
- Need to handle final phasing (longitude rendezvous)

On-board, full autonomy concept: thrust profile computation

Lyapunov feedback law, allowing a simple closed-loop formulation of the guidance problem

• Control feedback algorithm designed to decrease a scalar function L representing of how far the S/C is from its target.

$$L(\underline{x}, t) \stackrel{\text{\tiny def}}{=} \frac{1}{2} \sum_{i=1}^{N} w_i (x_i(t) - x_{i,target}(t))^2$$

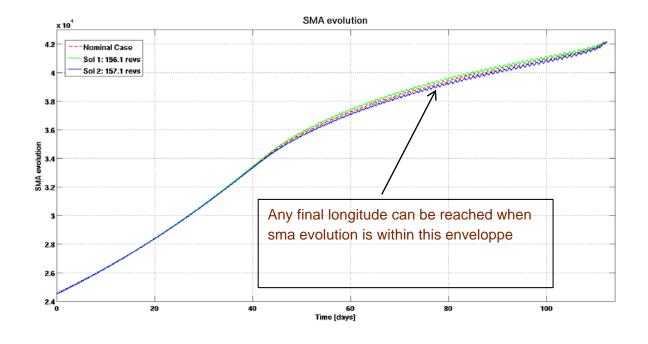
- The method is simple, with very few tuning parameters and offers a good mix between stability and optimality
- Many mathematical expressions have been derived in the literature to describe such a Lyapunov function.
 - In most expressions, the coupling of the orbital parameters is ignored
 - however, this coupling needs to be considered for GTO to GEO, in order to really minimize propellant consumption

Innovative Lyapunov Feedback Control algorithm improved from Q-law

- Uses a new formulation for the Lyapunov function
- Enables to target a, e, i, RAAN
- The calculations involved (such as the derivatives) are derived analytically and rather simple
- Minimum mass transfers, eclipses (for EPS constraints) are included.
- Perturbations: J2, Moon + Sun, SRP (can be extended)
- Requires very few tuning parameters (typ. between 2 to 4 for a GTO to GEO transfer)

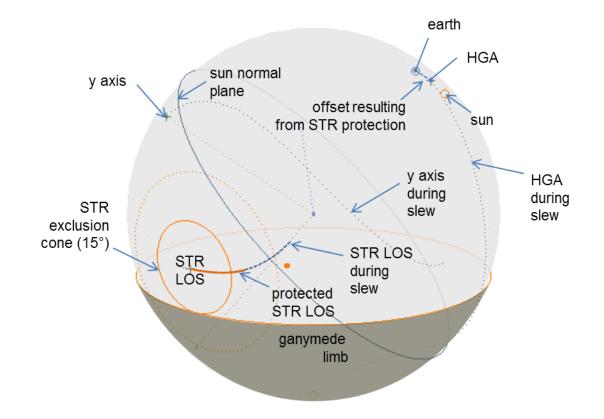
Additional functionality for autonomous longitude targeting

Problem statement


- total time/longitude is not covered by Lyapunov optimizers
 - optimizer might reach the right orbit, but not at the right time
 - therefore not the right longitude
- a separate functionality is needed, for longitude targeting

Solution uses two main modules

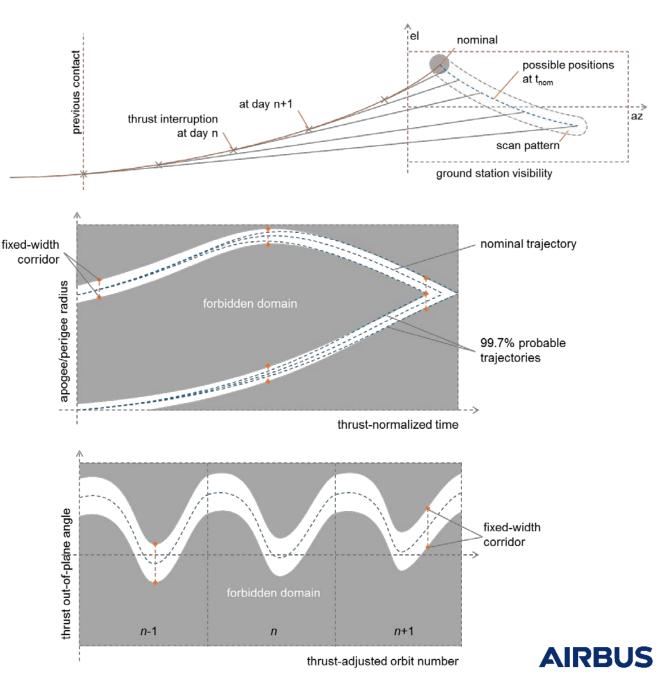
- periodic prediction of final longitude
 - from current orbital state + time
- adjustments of thrust profile to correct final error


Computational aspects

- on-board prediction of final longitude error is CPU-intensive
- but it is only needed from time to time
- expected to be the largest contributor to CPU load

Autonomous attitude profile computation: 3-axis Lyapunov attitude guidance

- Derived from a function under development for JUICE
- a Lyapunov function includes
 - thrust direction error (weighted)
 - sun pointing error (weighted)
 - forbidden cones (e.g. STR blinding in LEO)
- computes direction of steepest descent
 - for maximum decrease of L function
 - saturated by dynamic limitations (torque, momentum)
 - to obtain commanded quaternion step
- smart avoidance of forbidden directions
 - adjust radial component of angular rate
 - circulate around forbidden cones
 - avoid stalling when approaching normally
 - avoid locking when constraint not convex



AIRBUS

FDIR aspects

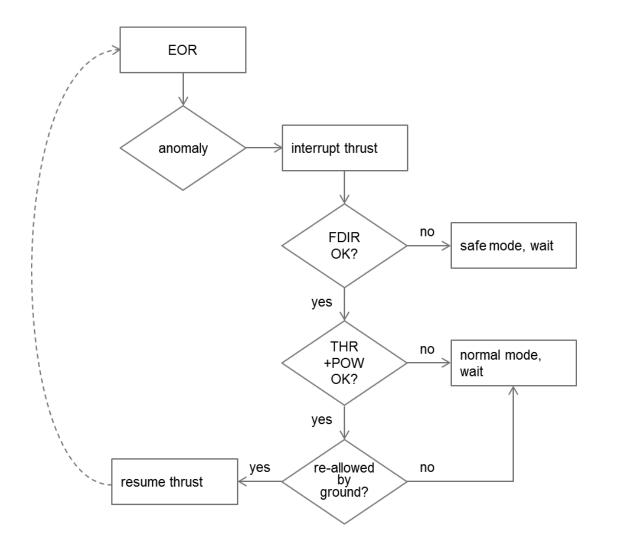
Current architecture already autonomous wrt. anomalies

- autonomous reconfiguration / safing
- default strategy
 - interrupt thrust
 - go to safe configuration
 - wait for ground input
- 24-48h delay in EOR scenario
- Specific changes introduced in suggested architecture
- Reduced frequency of ground contacts
 - antenna search patterns after 1 week of thrust interruption
 - (see top-right figure)
- Autonomous navigation
 - option: protect against corrupt navigation inputs
 - (see middle-right figure)
- Autonomous guidance
 - option: protect against corrupt guidance inputs
 - (bottom-right figure)

Option: autonomous resumption of thrust scenario

Objective = avoid long interruptions

- especially upon spurious anomalies
- simple and safe approach proposed


Description of the (optional) strategy

- upon anomaly, interrupt thrust
- isolate failure and reconfigure

then:

- if not back to nominal, go to safe mode and wait for ground
- if failure related to propulsion system, wait for ground
- if ground has not re-allowed autonomous thrust resumption since previous anomaly, wait for ground

• otherwise, restart thrust and resume the EOR closed-loop

Routine operations

Telemetry slots

- every 7 days, TM link is established
 - to receive satellite data (health check)
 - satellite orbit (nav check)

Ground tasks

- general monitoring
- thrust calibration
- collision risk monitoring

Telecommand slots

- the autonomous guidance does not need TCs
- however, TCs required every ~28 days
 - to monitor TC link health (dead man's switch)
 - (upload updates to guidance parameters if relevant)
 - (e.g. calibrated thrust, if significant deviation)

Contingency cases

On-board failure

- interrupt thrust if degraded configuration
- if FDIR = OK, EOR resumes autonomously (if pre-allowed)
- if satellite not found immediately, start search pattern
- on-demand TC: upload new conf. / re-arm auto-resume flag **Navigation function failure**
- (self-detection by GPS or inconsistency in guidance function)
- decision = thrust interruption

Collision risk

- detected: book on-demand TMs to refresh nav information
- confirmed: on-demand TC, temporary override of guidance

TC link failure (if no TC received after 28 days)

- cut thrust to facilitate ground search if issue is nav-related
- if still no TC after P days: autonomous transfer to safe orbit
 - avoiding GEO arc if middle of transfer
 - reorbiting to graveyard orbit if end of transfer

Prototyping, performances, and results of real-time PIL tests

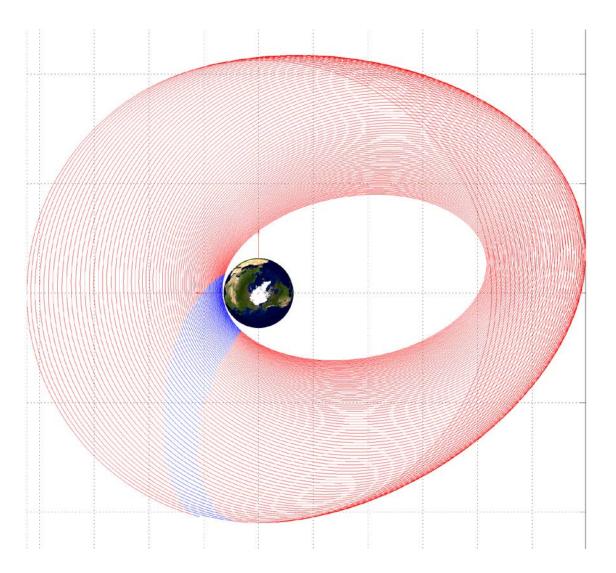
Autonomous guidance SW prototyped

- longitude rendez-vous (asynchronous, from time to time)
- thrust/attitude guidance computation (@each orbit)
- attitude profile unpacking (synchronous @AOCS cycle)

Performances and functional validation in MATLAB/Simulink

- sub-optimality wrt. ground optimum < 1% extra ΔV
- performances and behaviour confirmed in FAME simulator

Automatic code generation => real-time SW prototype


- following standard AOCS/SW practices
- PIL testing on LEON3 board (50 MHz)
- measurement of worst-case execution times (WCET)
- alls functions tested on sizing case (early transfer)
- new cyclic task compared to current NEOSAT task

	longitude	guidance	unpack (new – current)
WCET (measured)	300 s	800 ms	110–100 = 10 µs
Time allocated to task	1 orbit	5 minutes	100 ms
relative overhead	0,7%	0,25%	<0.01%

Conclusions

Compatibility with on-board implementation is confirmed

- Fully autonomous EOR solution
- Ready for adoption by future missions
- Compatible with GEO as well as LEO cases

Thank you

Copyright mention