

Open Instruction Set Architectures (ISA) in Space

Roland Weigand Microelectronics Section (TEC-EDM)

European Space Agency

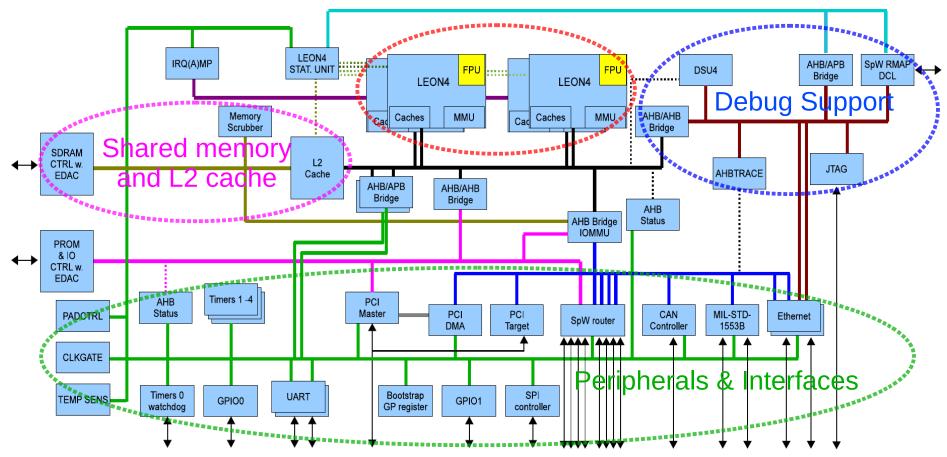
Why Using an Open ISA in space?

- What is an <u>ISA</u>?
 - Instruction Set (and) Architecture: abstract model of a computer not an IP
 - Open ISA = non proprietary, free to use for everybody
 - Note: "Open ISA" ≠ "open source IP core"
- Free of licence fees / royalties
 - But probably higher cost for development and verification of IP
 - Still saves a lot of hassle for licence negotiation
- No export restrictions (most likely...)
- Can be modified
 - In space: low-level modifications for radiation mitigation (pipeline restart...)
 - For unmodifiable COTS-IP or -chip: core- or chip-level redundancy, lockstep
 - Instructions can be modified or added
 - ASIP = Application-Specific Instruction-set Processor
- Examples: OpenRISC, SPARC, RISC-V, MIPS (open as of 2019!)

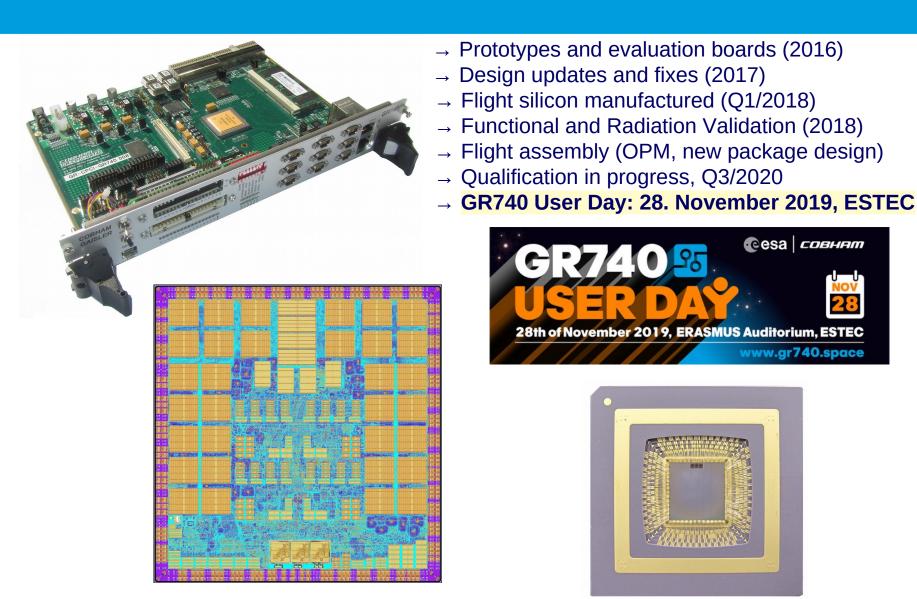
Open-Source Instruction Set Architectures (ISA) in Space (R. Weigand) – ESA UNCLASSIFIED For Official Use – (2) 13. Nov 2019

Choice of SPARC for Space - a Success Model!

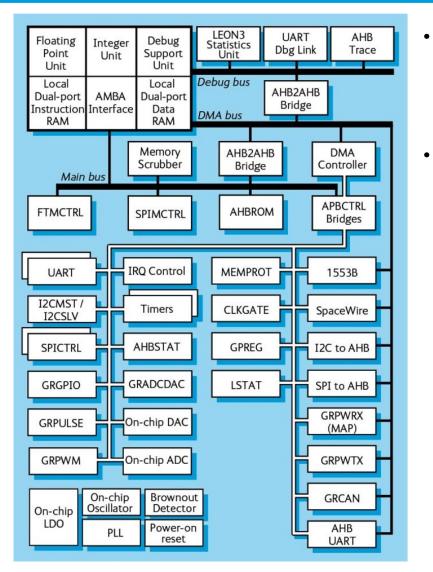
- Keynote Jiri Gaisler, ADCSS 2017 https://indico.esa.int/event/182/timetable
- Why did ESA choose SPARC (25 years ago...)?
 - \rightarrow Free and open Standard, allowing for customised implementations
 - \rightarrow Industry and academia backing: commercial products (Sun, Fujitsu)
 - \rightarrow Stable specification, low complexity, GNU tool chain
- Market penetration <u>estimated</u> sales > 10000 (FM / PFM):
 - \rightarrow Microchip (Temic/Atmel): ERC32 (TSC691/2/3/5): 5000
 - \rightarrow Microchip LEON2 based: AT697, AT7913, AT7991: 1500
 - \rightarrow Cobham Gaisler (UT699/700, GR712RC, RTAX): 2000
 - → Leon ASICs (SCOC3, MDPA, COLE, DST, TTE): ????
 - \rightarrow LEON IP (Gaisler, LGPL, ESA) on many space FPGA: ????
 - SPARC is on all recent ESA satellites and on Vega and Ariane 5 and 6
 - \rightarrow Commercial telecom satellites (SCOC3, AGGA4)
 - \rightarrow It has flown to the back side of the moon (AT697, Chang'E4)
 - Is SPARC/LEON becoming obsolete? No, it is still used and maintained
 - → Still LEON IP users (LEON2 in 65 nm for Ariane-6 TTEthernet)
 - \rightarrow Compilers up to date: GCC 7.2.0 (2017, Aug \rightarrow December)
 - → LLVM CLANG 4.0.0 (2018)
 - \rightarrow RTEMS-SMP 5.1 (2017), qualification in progress


Cobham Gaisler AB

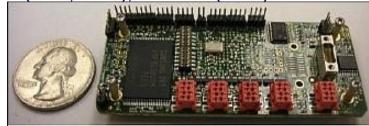
GR740 - Quad-Core, 65 nm, 250 MHz

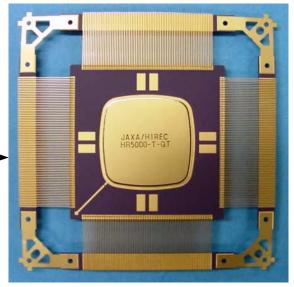

4 CPU cores with FPU and L1 cache

Open-Source Instruction Set Architectures (ISA) in Space (R. Weigand) – ESA UNCLASSIFIED For Official Use – (4) 13. Nov 2019


GR740 Development Status

GR716 Status


- GR716 Status
 - \rightarrow Development completed
 - \rightarrow Prototypes and board available
 - \rightarrow Radiation testing done (report pending)
- Industrialisation planned (funding?)
 - \rightarrow Revision GR716B with new features
 - \rightarrow Qualification in Ceramic QFP132
 - \rightarrow Package variants (MCM with NVM?)


Open-Source Instruction Set Architectures (ISA) in Space (R. Weigand) – ESA UNCLASSIFIED For Official Use – (7) 13. Nov 2019

History: RISC-1, MIPS, DLX, OpenRISC

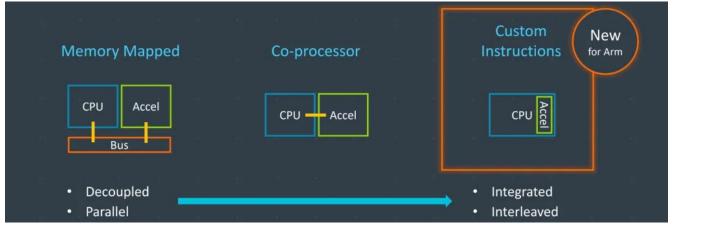
- RISC-1: Berkeley, David Patterson / Carlo Sequin (1980 1984)
 → Register Windows, Commercialised as SPARC by Sun
- MIPS: Stanford, John Hennessy (1981 1985)
 - \rightarrow Microprocessor without Interlocked Pipeline Stages, single cycle
 - → Used as proprietary IP until 2019 (owners: Imagination, Wave)
 - \rightarrow Used by JAXA for space microprocessors
- DLX ("Deluxe"): Hennessy / Patterson (1990's)
 - \rightarrow Modernised MIPS, for teaching only
 - \rightarrow Data forwarding, instruction reordering
- OpenRISC: Started 1999 (Rev 1.3 6/2019), https://openrisc.io/
 - \rightarrow OR1200 (LGPL) https://github.com/openrisc/or1200, 2000 -2015
 - \rightarrow MOR1K (OHDL) https://github.com/openrisc/mor1kx, active 2019
 - \rightarrow Commercially used e.g. by Flextronic in Samsung TV's
 - → Space usage: OBClite, ÅAC Microtec (Ångström / Clyde Space)
 - → Flown on TechEdSat-1 (USA, 2012), RISESat (2013)
 - RISC-V: Berkeley (2010)
 - → https://riscv.org/
 - → Rev. 2.2 (6/2019)
 - \rightarrow BSD licence
 - → No reg windows
 - \rightarrow Flexible extensions

ÅAC OBCLite

TechEdSat-1

Name	Description	Status
Base		
RV32I	Base Integer Instruction Set, 32-bit	Frozen
RV32E	Base Integer Instruction Set (embedded), 32-bit, 16 registers	Open
RV64I	Base Integer Instruction Set, 64-bit	Frozen
RV128I	Base Integer Instruction Set, 128-bit	Open
Extensions		
М	Standard Extension for Integer Multiplication and Division	Frozen
А	Standard Extension for Atomic Instructions	Frozen
F	Standard Extension for Single-Precision Floating-Point	Frozen
D	Standard Extension for Double-Precision Floating-Point	Frozen
G	Shorthand for the base and above extensions	N/A
Q	Standard Extension for Quad-Precision Floating-Point	Frozen
L	Standard Extension for Decimal Floating-Point	Open
С	Standard Extension for Compressed Instructions	Frozen
В	Standard Extension for Bit Manipulation	Open
J	Standard Extension for Dynamically Translated Languages	Open
т	Standard Extension for Transactional Memory	Open
Р	Standard Extension for Packed-SIMD Instructions	Open
V	Standard Extension for Vector Operations	Open
N	Standard Extension for User-Level Interrupts	Open
Н	Standard Extension for Hypervisor	Open

- General Purpose Processor
 - → RV32IMAFD = RV32G (= SPARCV8?)
 - \rightarrow 32 int + 32 float registers (no windows!)
 - → Load-Store (reg2reg arithmetics only)
 - → SPARC-like 20+12 lui (sethi) mechanism
 - \rightarrow No branch delay slot, little endian
- Numerous extensions (draft!)
 - → C Compressed (= Thumb, Leon-REX?)
 - \rightarrow B Bit Manipulation (requested by user)
 - → Hypervisor / SIMD / Vector
- IPs and chip implementations (examples)
 - → Opensource IP (Rocket, BOOM, PULPino...)
 - → Commercial IP (Syntacore, Andes...)
 - \rightarrow SiFive (IP + 4+1-core 1.5 GHz, 28 nm)
 - → Greenwaves (8+1 core 250 MHz, 55 nm)
 - → Alibaba XuanTie (2.5GHz 16-core, 12 nm)
 - → NVIDIA replacing Falcon controller by RISCV


Open-Source Instruction Set Architectures (ISA) in Space (R. Weigand)

Competitor's Answer in 2019

- ARM is opening for custom instructions
 - → The IP and ISA are still proprietary, custom instructions in a "container" https://www.arm.com/why-arm/technologies/custom-instructions

https://staceyoniot.com/why-arm-opened-up-its-instruction-set-and-what-it-means-for-iot/

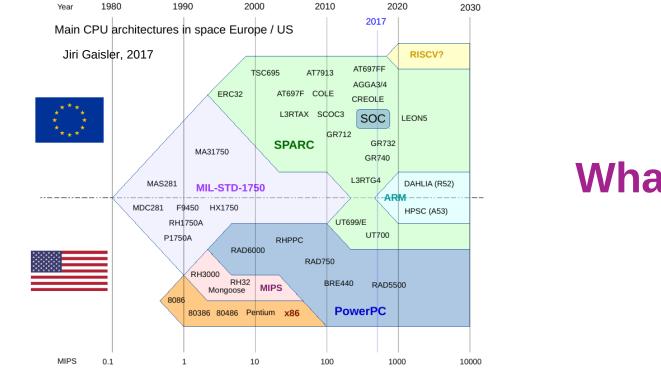
 MIPS going open source after sale to Wave https://www.mips.com/mipsopen/

- IBM OpenPower (2013), PowerISA open-sourced in 2019 https://openpowerfoundation.org/the-next-step-in-the-openpower-foundation-journey/
- \rightarrow A success story for RISC-V ...

This session

- Leveraging the Openness and Modularity of RISC-V in Space NPI Research cooperation Speaker: Mr Stefano Di Mascio (TU Delft)
- Introduction of Fault-Tolerant Concepts for RISC-V in Space (ESA TRP/ITI contract) ESA ITI R&D contract, evaluation, TMR and fault injection of (LowRisc) RISC-V IP Speaker: Mr Jan Andersson (Gaisler), Luis Aranda (Aries)
- The RISC-V Klessydra Orbital Lab project PULPino implementation for space Speaker: Mr Luigi Blasi (university of Rome)
- New arithmetic extensions for LEON2-FT (ESA GSTP contract) FPU, and SIMD / Vector operations, will be available as ESA IP-core Speaker: Mr Daněk Martin (DAITEQ)

Conclusion


The SPARC open ISA: 25 years in space, ~10000 Flight Models

- \rightarrow Synergy with academia and commercial use of SPARC in the past
- \rightarrow SPARC is not dead: GR740 and GR716 new ESA supported processors
- → Huge effort on SW ecosystem done (compilers, OS, hypervisor)
- → SPARC will be our work-horse for many years to come

Several other open and proprietary RISC ISA's have been used in space

 \rightarrow None of them has been as successful in space as SPARC

What NEXT???

Conclusion

1980

Jiri Gaisler, 2017

Year

1990

Main CPU architectures in space Europe / US

MAS281

Years

of

The SPARC open ISA: 25 years in space, ~10000 Flight Models

- → Synergy with academia and commercial use of SPARC in the past
- → **SPARC is not dead**: GR740 and GR716 ESA supported processors
- \rightarrow Huge effort on SW ecosystem done (compilers, OS, hypervisor)
- → SPARC will be our work-horse for many years to come

2000

TSC695

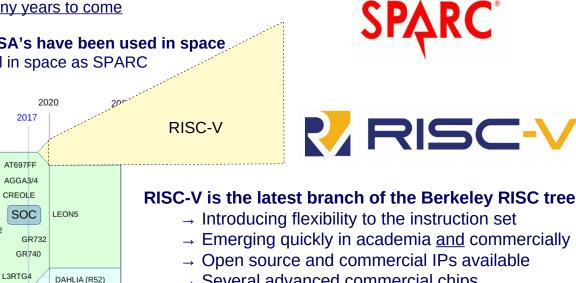
ERC32

MA31750

Several other open and proprietary RISC ISA's have been used in space

2010

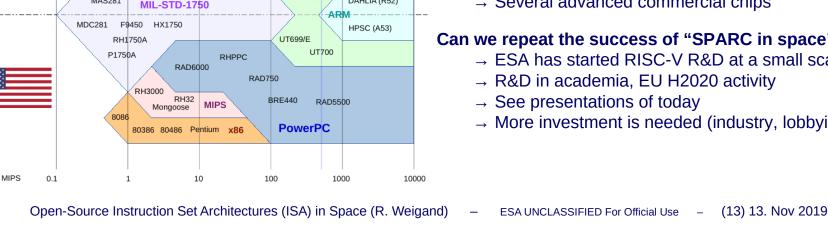
AT7913


AT697F COLE

SPARC

L3RTAX SCOC3

GR712


 \rightarrow None of them has been as successful in space as SPARC

→ Several advanced commercial chips

Can we repeat the success of "SPARC in space"?

- → ESA has started RISC-V R&D at a small scale
- \rightarrow More investment is needed (industry, lobbying)

