

SpacePix2

a novel detection ASIC for cosmic radiation

Michal Marcisovsky¹, Petr Suchanek² On behalf of the SpacePix group

¹ FNSPE CTU in Prague ² esc Aerospace s.r.o.

Status report

Project	AO9018
Start	02/2019
ESA TO	Marco Vuolo

Contact: Michal.Marcisovsky@cern.ch Petr.Suchanek@esc-aerospace.com

17.12.2019

Talk outline

- Monolithic 180 nm SoI CMOS technology
- SpacePix2 heritage: X-CHIP-03 ASIC
- Signal response, TID & SEU characterization
- SpacePix2 architecture
- The SpacePix Radiation Monitor space grade version

Monolithic Sol Technology

The cross section of the hybrid detector

Hybrid detectors

- Classical detectors with extensive HEP heritage
- Sensor and readout electronics on separate wafers
- Large material budget
- Complicated assembly

The cross section of the Sol monolithic detector (not to scale)

Monolithic Sol detectors

- Sensor and electronics are implemented in the same silicon substrate, currently up to 35 μm depleted layer
- Detection of particles in a handling wafer
- A commercial process in an European foundry
- Partially depleted electronics layer (PD Sol)
 - Higher tolerance towards SEE
 - Limited effect of BOX (Buried OXide) charging
- Temperature operating range of -40 to 175 °C
- Wafer thinning down to 50 μm \rightarrow low material budget

The X-CHIP-03 ASIC

- Predecessor to SpacePix ASIC family
- A monolithic pixel detector for soft X-ray imaging
 - Photon counting mode (16-bit counter)
 - Energy deposition mode (10-bit column ADC)
- 64×64 pixels, 60 µm pitch
- $3.9 \times 3.9 \text{ mm}^2$ sensitive area, $4.5 \times 5 \text{ mm}^2$ total
- SPI and LVDS readout, < 50 mW power consumption
- CSA optimized for 1-10 ke⁻
- Approximately 3M transistors

X-CHIP-03: SOI MAPS radiation sensor with hit-counting and ADC mode IEEE NSS MIC 2018, DOI: 10.1109/NSSMIC.2018.8824681

The X-CHIP-03 ASIC

An X-ray image of a cell phone

An X-ray image of a wristwatch

SEU testing of the technology

- ECSS 25100 SEE Test Method and Guidelines
- Ions by U400M isochronous cyclotron & Tandetron 4130MC
 - ⁴He, ⁷Li, ²²Ne, ⁴⁰Ar, ⁸⁶Kr and ¹³⁶Xe
- Cosmic cocktail with LET in range of 0.5 75 $MeVcm^2mg^{-1}$
- The DUT shift register with 1024 custom D flip-flops
- Chessboard pattern; R/O using the SpacePix-D recorder
- No destructive SEE were observed, the bit-flip cross section was found to be low w.r.t. the bulk CMOS

In vacuo measurement of the the SEE cross section and signal detector response at heavy ion beam-line with SpacePix-D readout.

Extracted ion	Energy	Range	LET ₀	
	$[\mathrm{MeV}/\mathrm{n}]$	[µm]	$[\rm MeV{\cdot}cm^2{\cdot}mg^{-1}]$	
$^{4}\mathrm{He}^{2+}$	2	36.91 ± 0.02	0.45 ± 0.02	A study of single event effects induced by heavy charged particles
$^{7}\mathrm{Li}^{3+}$	1.42	27.5 ± 0.05	1.27 ± 0.05	in 180 nm Sol technology
$^{22}Ne^{10+}$	3.33	36.91 ± 0.35	6.67 ± 0.1	2018 IEEE NSS MIC, DOI: 10.1109/NSSMIC.2018.8824677
$^{40}{ m Ar^{16+}}$	3.48	36.60 ± 0.44	15.09 ± 0.24	
${}^{86}{ m Kr}^{32+}$	3.49	40.8 ± 0.48	40.25 ± 0.75	
136 Xe ⁴⁶⁺	3.16	36.38 ± 0.52	68.97 ± 1.03	×10 ⁻⁹
		F U	esc Aerospace	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
The SpacePin Journal of Ins	x-D tech	nology dem ation, 13(12)	onstrator.):C12017, 2018	$0^{\frac{1}{0}}_{0}$ 10 20 30 40 50 60 70 The measured bit-flip cross section as a function of LET [MeVcm ² mg ⁻¹] 5/1

⁶⁰Co TID testing

- ECSS 22900 Total Dose Steady-State Irradiation Test Method
- The ASICs were irradiated in electron equilibrium conditions with powered electronics
- The transistor test structures and overall power consumption was evaluated in order to assess the TID effects
- TID response characterized at large dose rate ~150 Gy/min and at lower doses (16 Gy/min)
- The CMOS $V_{{\scriptscriptstyle T\!H}}$ shift is small, emergent parasitic transistors increase power consumption
- Threshold of TID effects is \approx 2 kGy @ 16 Gy/min, affecting primarily digital part of the ASIC
- Significant annealing effects observed

The transistor test structures - HVP (left), wide and long NMOS / PMOS

An example of $V_{{\scriptscriptstyle TH}}$ shift and leakage current measurements

The power consumption of X-CHIP-03 powering domains

SpacePix2 architecture – requirements

The SpacePix is a family of ASICs based on a monolithic 180 nm PDSoI technology designed for detection of charged particles in space.

- Low-power (<100 mW), thin detector capable of processing 10⁷ 10⁸ pixel hits cm⁻²s⁻¹
- Capable of dE/dx measurements of electrons, protons and heavy ions (large dynamic range)
 - Measurement of signal in pixels (e⁻) and sensor backside layer (h⁺)
- Designed for standalone operation, in a telescope configuration or with a scintillator/SiPM
- Simple and robust architecture for a reliable operation in space environment
- Operated by a microcontroller or an FPGA in continuous or pulsed mode (field sampling)

Operational experience was acquired from previous ASICs including the SpacePix 1 test structure.

The pixel E-field, charge collection and implant shape optimized using TCAD and AllPix²

The SpacePix2 ASIC

- Dimensions $4.5 \times 5.5 \text{ mm}^2$
- Built-in:
 - Thermometer (<0.5 °C precision)
 - Voltage references
 - Pixel analog signal output
- Architecture **scalable** to larger ASICs
- Selectable communication interface for MCU (SPI) and FPGA (LVDS)
- SEE hardened logic
- ASIC submitted for manufacturing

Pixel matrix	64×64 pixels, 60 μ m pitch
Signal dynamic range	Pixel amplifier 1 to 65 ke ⁻ Backside 0.25 to 30 Me ⁻
Digitization	10-bit fast ADC
Power consumption	< 80 mW in continuous mode
Comm interface	50 MHz SPI, 500 MHz LVDS
Triggering	Fast particle hit signal
Calibration	Charge injection circuit

The internal architecture of the SpacePix2 ASIC

n bio kata ana kata da kata da Kata da kata da						
The final layout of the ASIC 8/12						

The SpacePix Radiation Monitor (SXRM)

The SXRM is a telescope with interleaved layers of SpacePix2 ASICs, PCB, and W/Cu absorber layers.

Particle energy and species determination:

- Sampling of dE/dx in multiple layers
- Pattern recognition techniques (clustering, topologies) and partial reconstruction of particle trajectory in a DPU
- Supports operational modes of radiation imaging, clustering, tracking and particle energy / LET histogramming

The conceptual design of the 5-ASIC SXRM

The SXRM space-grade version concept

- The detection "box" connected to a readout DPU
- The box design dimensions are $40\times30\times25~mm^{_3}$
 - Weight less than 60 g (Al case) or 135 g (Inconel)
 - Can be also connected to a non-space grade DPU
- The overall SXRM envelope $100\times60\times40~mm^3$
- Expected total weight < 500 g

The SXRM detection box

Simulations and optimization performed using Geant4 model

- Charge sharing and plasma effect
- Pixel transfer curves extracted from ASIC simulation

With hit coincidence, the SXRM is able to detect or reconstruct particle trajectories and estimate the species and energy of:

- electrons from 80 keV to 10 MeV
- protons from 1.5 MeV to 150 MeV
- heavy ions up to 50+ MeVcm²mg⁻¹

In-orbit demonstrator for X-CHIP-03 telescope

SpaceRad @ Socrat-R 3U

- Proto-SXRM proton telescope
 - 2 X-CHIP-03
- SpacePix1 GCR monitor
- SPACEDOS (NPI CAS)

The SXRM electronics

- Measured data will be reconstructed in a local rad-hard MCU, storage in MRAM
- The power consumption (depending on comm I/F used) of the 5-ASIC detector setup
 - < 1.5 W in continuous operation mode
 - < 0.3 W in radiation field sampling mode
- Communication via MIL-STD-1553B, RS-422, CAN, SpaceWire
- Powered from 28, 50 or 100 V rail
- On-board LV, HV PSU for ASIC sensor layer biasing

The functional block diagram of the SXRM

Conclusions

- Monolithic pixel detectors developed with commercial Sol CMOS technologies combine the advantages of silicon hybrid and MAPS detectors
- The SpacePix2 ASICs have been submitted for manufacturing
- The SXRM is a new low-power, highly-miniaturized proton, electron and heavy ion monitor with individual particle identification, classification and tracking capabilities
- The dynamic range of the SpacePix2 ASICs and multiple particle ionization dE/dx sampling will allow event reconstruction and identification using pattern recognition algorithms implemented in the CPU
- The current prototype with two detection ASICs is being validated in orbit and in testbeams
- The five-layer space-grade SXRM prototype will be constructed and tested in 2020

BONUS SLIDES

The SXRM variants under study

- Several variants are under consideration, varying in the number of detection layers and absorber thickness.
- The Geant4 simulations are being performed to find optimal geometry for:
 - Proton/electron/HI energy and angular resolution
 - Particle scattering in the absorber layer
 - Acceptance angle / geometric factor as a f(E)
 - Number of necessary SpacePix2 ASICs for required performance
- Inconel 600 / Al casing (shielding vs. backscattered electrons etc.)
 - Electronics (FPGA/µCPU) shielded in the bottom part of the SXRM
- ASICs glued and wire-bonded onto the flex

The 5-layer SXRM model

The linear SXRM model

The compact SXRM model