

MIRAD

Micro-particle impact related attitude disturbances

Patrik Kärräng

<u>Contact:</u> Patrik Kärräng p.kaerraeng@htg-gmbh.com

MIRAD - Micro-particle impact related attitude disturbance, TEC-EPS Final Presentation Days, 17th of December 2019

Microparticles pose a significant risk to space missions

https://commons.wikimedia.org/wiki/File:ISS_impact_risk.jpg

https://www.esa.int/ESA_Multimedia/Images/2013/04/Hypervelocity_Impacts#.XfZ8xT39QA4.link

https://www.lisamission.org/fr/multimedia/image/lisa-spacecraft-and-gravitational-waves

http://web.mit.edu/klmitch/classes/8.224/project/c_clarke/orbit163sc.jpg

Attitude disturbance due to microparticle impacts are poorly understood

https://www.esa.int/ESA_Multimedia/Images/2013/04/Hypervelocity_Impact#.XfZ7WPIftvg.link

Momentum enhancement:

$$\beta = \frac{\vec{P}_{total}}{\vec{P}_{Particle}}$$

The goal is to develop an engineering tool to predict attitude disturbance from an impact

- **Develop a momentum transfer model** based on hypervelocity impact experiments.
- Extend the IOTA framework to handle closed-loop control and replace the current momentum transfer model with the newly developed, improved momentum transfer model.
- To validate the software we are using operational data from three ESA satellites, Lisa Pathfinder, GAIA and Sentinel-1A. Finally, we are going to apply the software to the LISA design to assess the influence of the microparticle environment on the mission.

Relevant Particle Sizes

Impact count or probability	Particle momentum	Average impact velocity \overline{v}	Particle size at \overline{v} (2.5 g/cm ³)	Particle size at 7 km/s (2.7 g/cm³)
1 per day	0.0086 mN⋅s	20.4 km/s	0.069 mm	0.096 mm
1 per year	2.34 mN⋅s	21.9 km/s	0.43 mm	0.62 mm
1 per 10 years	15.0 mN⋅s	22.2 km/s	0.80 mm	1.15 mm
5% in 10 years	152 mN⋅s	22.3 km/s	1.73 mm	2.49 mm
1% in 10 years	529 mN∙s	22.4 km/s	2.62 mm	3.77 mm

MIRAD - Micro-particle impact related attitude disturbance, TEC-EPS Final Presentation Days, 17th of December 2019

Reasonable worst case particles determined via an abundance approach

Experiments performed with a two-stage light-gas gun and ballistic pendulum

Realistic spacecraft surface materials are used as targets

Standard CFRP Honeycomb Sandwich Panel

Solar cells (mounted on structural panel)

CFRP honeycomb sandwich panel with thick face sheets.

MLI (mounted on structural panel)

Optical fragment tracking is used to measure the ejecta velocity and size distribution

MIRAD - Micro-particle impact related attitude disturbance, TEC-EPS Final Presentation Days, 17th of December 2019

Ejected fragment momentum based on experimental data

- Size
- Velocity
- Momentum
- Angle

Extension of the IOTA framework

MIRAD - Micro-particle impact related attitude disturbance, TEC-EPS Final Presentation Days, 17th of December 2019

Setting up a simulation

Sampling impactors from the microparticle environment

File	Setup (LPF-baseline) - MIRAD_GUI	- + ×
Geometry Materials Spacecraft Orbit Impa	ts General	
Impact source: Manual list	Impacts	
	# Date Time Position [m] Mass [kg] Density [kg/m^3] Velocity [m/s] Material Surface angle [°]	

Input:

- SPICE kernel
- STENVI
- Mass, CoM, Mol
- Generic AOCS properties
- Impact in the campaign set to occur 60 sec after simulation start

45,821 impacts sampled:

2000 impact locations

Validation case: Sentinel-1A

https://www.esa.int/ESA_Multimedia/Images/2016/08/Sentinel-1_impact#.XfZ6KTevX3c.link

Thank you for listening!

<u>Contact:</u> Patrik Kärräng p.kaerraeng@htg-gmbh.com