
SLX FPGA
Accelerate the journey from C/C++ to FPGA

2

Silexica Facts

60 people worldwide,
engineering HQ in

Germany

Est. 2014 after a
decade of research

3 offices and
worldwide local

support engineers

Team of world
leading software and

hardware experts

USA

GERMANY

JAPAN

3

High-Level Synthesis Benefits

▪ High-level synthesis (HLS) provides C/C++ based FPGA
design, benefits include
• Faster implementation

• Faster verification

• Flexible design re-use

• Faster design space exploration

▪ However, there are challenges…

4

High-Level Synthesis – First Impressions

▪Can’t compile – lots of synthesizability errors

▪Slow performance and/or bloated area

▪Difficult to detect parallelism and remove
parallelism blockers

▪Time consuming, iterative manual pragma
optimization/insertion

5

Silexica SLX FPGA
▪ SLX FPGA sits on top of HLS compiler

• Prepares the C/C++ code for optimum HLS results

• Takes the guesswork out of using HLS

▪ Removes the roadblocks in HLS adoption
• Non-synthesizable C/C++ code

• Finding parallelism

• Poor performance and bloated area

▪ HW engineers: Get SW guidance needed

▪ SW engineers: Get parallelism/HW guidance

C/C++

6

Vivado HLS Optimization Methodology Guide

 Simulate Design

 Synthesize Design

1. Initial Optimizations

2. Pipeline for
 Performance

3. Optimize Structures
 for Performance

4. Reduce Latency

5. Improve Area

 - Validate the C function

 - Baseline design

 - Define interfaces (and data packing)
 - Define loop trip counts

 - Pipeline and dataflow

 - Partition memories and ports
 - Remove false dependencies

 - Optionally specify latency requirements

 - Optionally recover resources through sharing

7

SLX FPGA Assists at Every Stage

Guided code refactoring

Simulate & debug from SLX

SLX FPGA Capabilities:
- Deep Profiling
- Parallelism Detection
- Intelligent, Constraint-Based Heuristics
- Fast Pragma Exploration
- Analysis Tools

 Simulate Design

 Synthesize Design

1. Initial Optimizations

2. Pipeline for
 Performance

3. Optimize Structures
 for Performance

4. Reduce Latency

5. Improve Area

8

SLX FPGA - Automated Workflow for HLS

Synthesizability Refactoring

10

Code Refactoring for Synthesizability

▪ Not all C/C++ code is compatible with HLS
• HLS has unique coding standards that must be followed

• Not trivial – must become fluent in coding C/C++ for HLS

▪ SLX FPGA helps users refactor code for synthesizability
• SLX FPGA identifies non-synthesizable functions code

• Automatically refactors code for some common functions

• Provides guided refactoring with hints on how to rewrite code

11

Automatic Code Refactoring

Automatic
refactoring
of well-known
functions

Direct link to
generated
code

12

Guided Code Refactoring

Highlighting of
non-synthesizable
code (access to
pointer)

Summarized
report to help
refactoring

Guidance for
code re-writing

Parallelism Detection

14

Parallelism Detection

▪ Identifying parallelism is difficult
• Even more difficult if HLS user did not write algorithm

▪ SLX FPGA analyzes the applications and identifies
parallelism patterns to implement in hardware
• Identifies Data Level and Pipeline Level Parallelism

• Also provides insights into parallelism blockers

15

Parallelism Detection

Source
highlighting for
parallel code

Summarized
report to help
navigation

16

Parallelism Detection

DLP

Blocked
DLP

PLP

Blockers
identified

Automatic
 tripcount
 insertion

HW Optimization

18

Standard Vivado HLS Flow

C/C++ RTL

Code
Refactor

Pragmas

User must provide all
pragmas

Post RTL Synthesis Analysis Tools only

No tools for analyzing source code
=> Insights more difficult to obtain

Pragma Exploration is Tricky

▪ Powerful, but requires detailed
knowledge of code and Vivado
HLS

▪ Even small pragma/parameter
set leads to large design space

▪ Each combination needs to be
synthesized with HLS

▪ Some combinations can lead to
bloated implementations,
extended synth times

19

Vivado/Vitis HLS + SLX FPGA Flow

C/C++ RTL
C/C++

w/ Pragmas

User Config
Constraints

Analysis Tools

SLX FPGA

▪ Analyzes and
optimizes design
based on
constraints

▪ Automatically
inserts optimal
pragmas into
source code

▪ Analysis tools
assist with code
refactoring

Parallelism
Data Dependencies
Code Profiling
Memory accessesCode

Refactor

20

The SLX Optimization Engine

SLX
Optimization

Engine

Models Fast Performance &
Area Estimates

Resource
Constraints

Deep Profiler

Models

Interface
Bandwidth Pragmas &

Parameters

User Testbench

User Provided
Configuration

▪ Fully automated
heuristics guided
by deep profiling
information

▪ Internal models
enable fast
architectural
exploration

▪ Ability to explore
impacts of
different
configuration

21

Constraints

Resource constraints

Interface bandwidth

22

Design Space Exploration (DSE)

▪ Evaluate multiple user
configuration parameters

▪ Enables area/performance
trade-off analysis

Example:
Use SLX to generate results for

 3 interface bandwidth constraints across 8
resource constraints

23

Kalman Filter Example

SLX
Constraint

(KLUTs)

Actual LUT
usage from

HLS
(KLUTs)

Latency
(1000s of

clock cycles)

Tripcount
only

5.8 4929

12 15.3 4696

24 17.2 3751

48 34.4 98

Unlimited 34.4 98

24

IP Re-use

FPGA 3C/C++

FPGA 2

FPGA 1

Single validated
source code Product C

Product B

Product A

Pragma Set 1

Pragma Set 3

Pragma Set 2

Use DSE results to select pragma sets

Pragma Insertion

26

Automatic Pragma Insertion

▪ HW optimization stage
• Creates optimal pragma set

▪ Pragma Insertion Wizard
• Inserts all generated pragmas into

original source code

• Allows designer full control over
pragma insertion

27

SLX Code Transformation Wizard

Enable/disable
individual or
groups of pragmas

Original/Updated
code side-by-side
view

28

Automatic HLS Pragma Insertion

Automatically
annotate the code
with pragmas

Direct link to
generated file

Deep Profiling and Analysis Tools

30

Hardware Aware Coding

▪ Pragmas can only go so far
• Modifying the original code to be more hardware aware can lead to better performance and area

▪ Hardware aware refactoring requires insights into the algorithm.

▪ SLX Analysis tools provide detailed insights on the source code:
• Code and Function Profiling
• DLP and PLP detection
• Data dependency detection
• Software Call Graphs
• Hotspot detection
• Memory/variable analysis
• Code analysis graphs

31

Code Profiling

% time spent in sequential execution

Code Coverage

32

Software Call Graphs with Profiling

Pre-Optimization Post-Optimization

33

Hotspot Detection

Testbench Code Synthesizable Code

34

Memory Analysis

Access
statistics

Integrated source
code highlighting

Location Size

35

Code Analysis Graph

▪ Visual representation
of relationship
between variables
and the functions that
access them

▪ Filters allow control
over the details in the
graph

▪ Simultaneous variable
and function access
information

Collateral & Real World Results

37

SLX FPGA Getting Started

Quick Start Guide SLX FPGA Walkthrough Videos

38

SLX FPGA – Application White Papers

Kalman Filter

62x Speed-up with SLX FPGA

Black Sholes & Heston

29x Speed-up with SLX FPGA

SHA-3 Algorithm

600x Speed-up with SLX FPGA

39

Reduce Development Time with SLX FPGA

Design Phase Done by hand (Days) SLX Optimized (Days)

Clean up code to be synthesizable 1 0.5

Synthesize first HW 1 1

Refine Synthesis by inserting pragmas 10 days 1

Repeat last step until satisfied with results 2

Validate using C/C++ Testbench 0.5 0.5

Create IP 0.5 0.5

Total time 13* 6

• Example from expert HLS user
• Design was relatively small vision processing algorithm (~4KLUTs)
• Final performance achieved with HLS+SLX was better than RTL.

40

Adam Taylor Blog – Influential Xilinx Blogger

“What is interesting to me having worked considerably with HLS over the years is how easy the insertion of
pragmas was with SLX FPGA. HLS optimization can be a challenging, iterative and time-consuming process,
SLX FPGA made this much simpler.”

41

SLX Release Schedule

Release Quarter Date

SLX v20.1 Q1 April 6, 2020

SLX v20.2 Q2 June 29, 2020

SLX v20.3 Q3 September 21, 2020

SLX v20.4 Q4 December 14, 2020

42

Summary

▪ SLX FPGA accelerates the journey from C/C++ to
Hardware by removing many of the roadblocks of
using HLS

▪ SLX FPGA takes the guesswork out of using HLS

▪ SLX FPGA can help you maximize the performance
of your designs in a fraction of the time

Silexica is ready to help you get started with SLX FPGA today!

