SILEXICA

SLX FPGA Accelerate the journey from C/C++ to FPGA

Silexica Facts

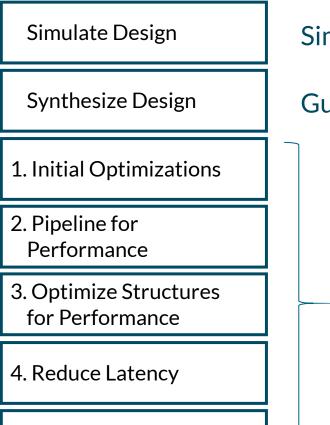
High-Level Synthesis Benefits

- High-level synthesis (HLS) provides C/C++ based FPGA design, benefits include
 - Faster implementation
 - Faster verification
 - Flexible design re-use
 - Faster design space exploration
- However, there are challenges...

High-Level Synthesis – First Impressions

- Can't compile lots of synthesizability errors
- Slow performance and/or bloated area
- Difficult to detect parallelism and remove parallelism blockers
- Time consuming, iterative manual pragma optimization/insertion

Silexica SLX FPGA

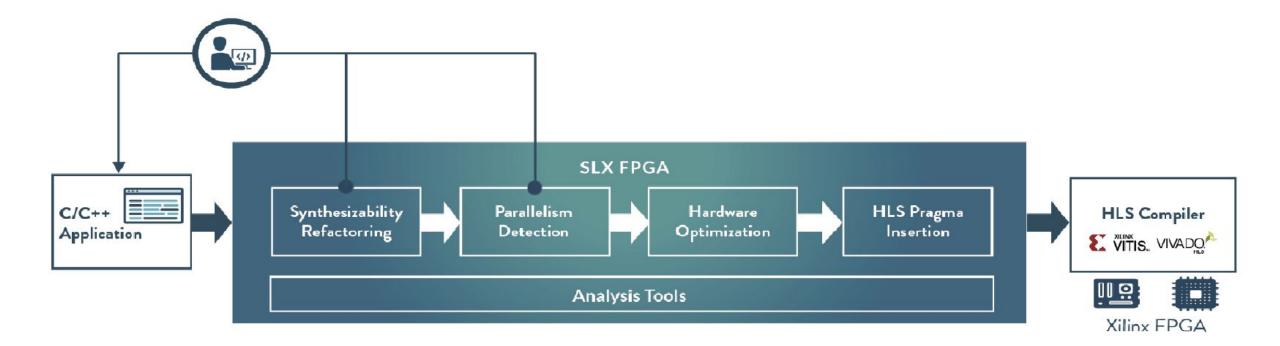

- SLX FPGA sits on top of HLS compiler
 - Prepares the C/C++ code for optimum HLS results
 - Takes the guesswork out of using HLS
- Removes the roadblocks in HLS adoption
 - Non-synthesizable C/C++ code
 - Finding parallelism
 - Poor performance and bloated area
- HW engineers: Get SW guidance needed
- SW engineers: Get parallelism/HW guidance

Vivado HLS Optimization Methodology Guide

Simulate Design	- Validate the C function
Synthesize Design	- Baseline design
1. Initial Optimizations	- Define interfaces (and data packing) - Define loop trip counts
2. Pipeline for Performance	- Pipeline and dataflow
3. Optimize Structures for Performance	- Partition memories and ports - Remove false dependencies
4. Reduce Latency	- Optionally specify latency requirements
5. Improve Area	- Optionally recover resources through sharing

SLX FPGA Assists at Every Stage

5. Improve Area

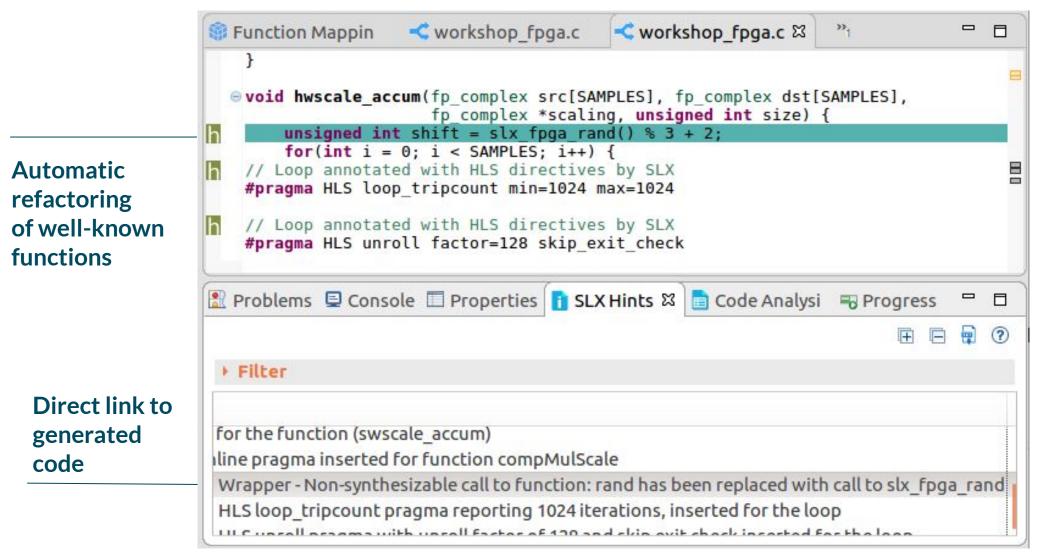

Simulate & debug from SLX

Guided code refactoring

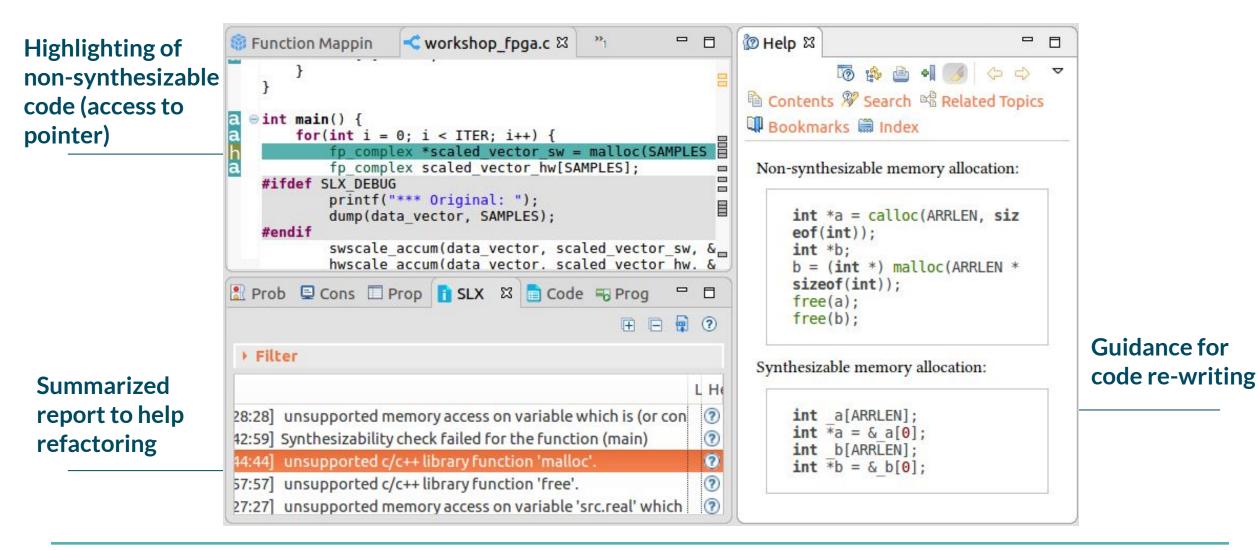
SLX FPGA Capabilities:

- Deep Profiling
- Parallelism Detection
- Intelligent, Constraint-Based Heuristics
- Fast Pragma Exploration
- Analysis Tools

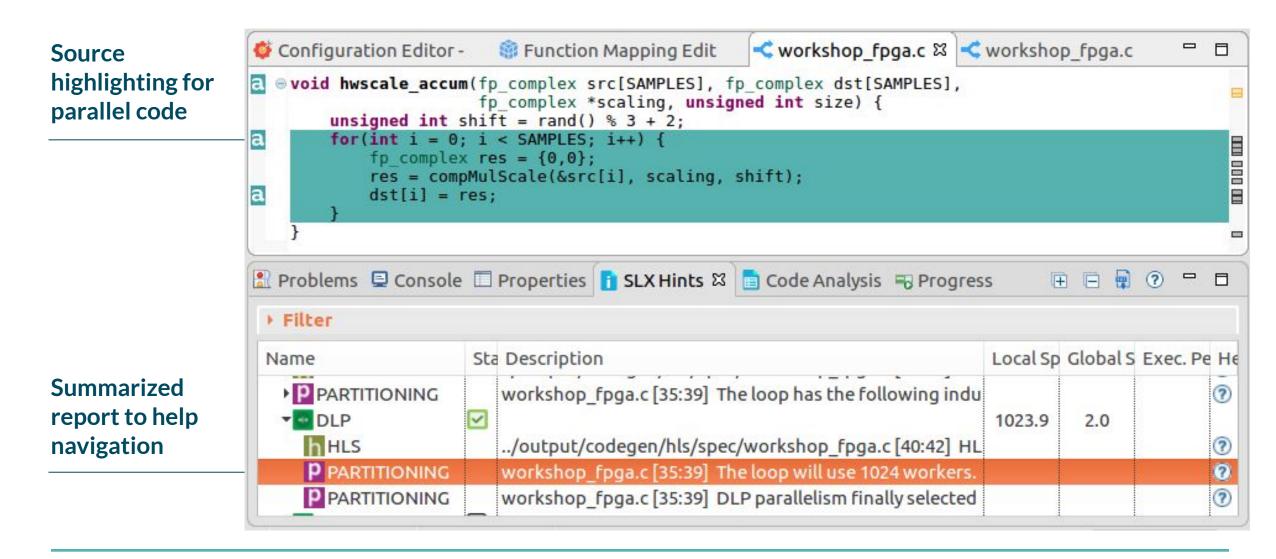
SLX FPGA - Automated Workflow for HLS


Synthesizability Refactoring

Code Refactoring for Synthesizability

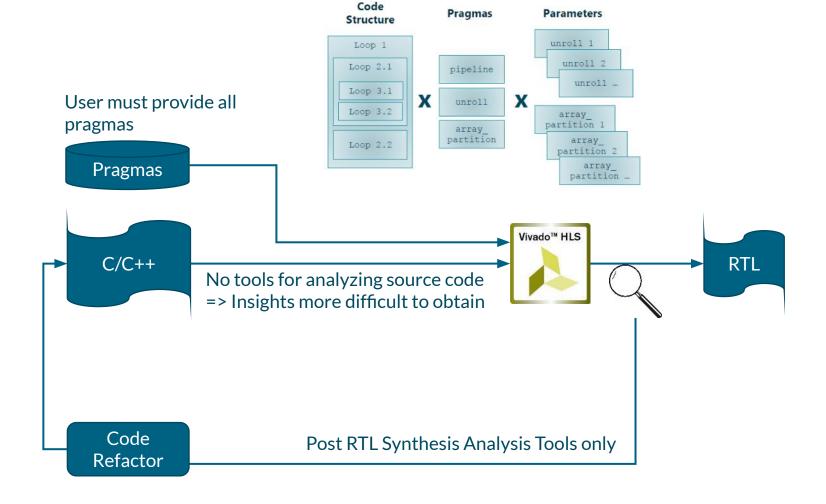

- Not all C/C++ code is compatible with HLS
 - HLS has unique coding standards that must be followed
 - Not trivial must become fluent in coding C/C++ for HLS
- SLX FPGA helps users refactor code for synthesizability
 - SLX FPGA identifies non-synthesizable functions code
 - Automatically refactors code for some common functions
 - Provides guided refactoring with hints on how to rewrite code

Automatic Code Refactoring



Guided Code Refactoring

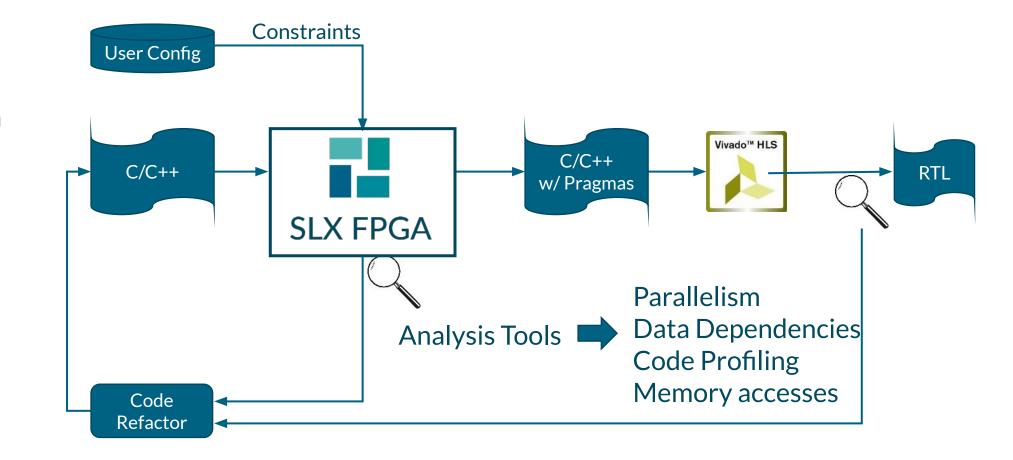
- Identifying parallelism is difficult
 - Even more difficult if HLS user did not write algorithm
- SLX FPGA analyzes the applications and identifies parallelism patterns to implement in hardware
 - Identifies Data Level and Pipeline Level Parallelism
 - Also provides insights into parallelism blockers

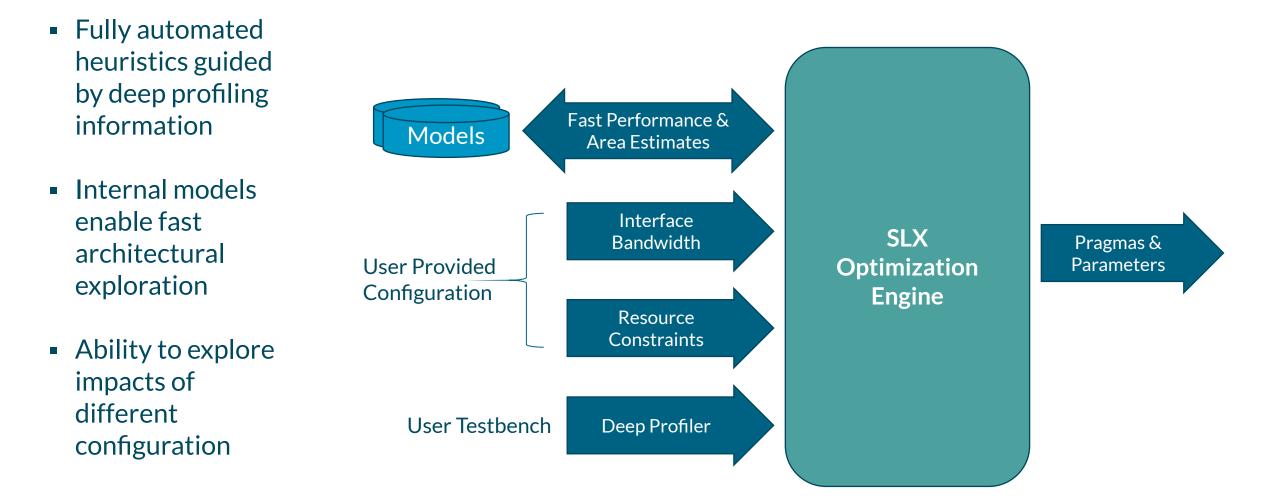

		Name	Status	Location	Description	Help	
Blocked		Y	' ¥	' ¥		YY	
DIUCKEU	14	4 🖸 Loop		\src\rng.cpp [83:95]			
DLP	15	HLS		\output\codegen\hls\src\	HLS loop_tripcount pragma reporting 312 iterations, inserted for the loop	0	Blockers
	16	🔺 🔤 DLP	$\mathbf{\times}$				
	17	PARTITIONING		\src\mg.cpp [83:95]	The loop does not provide DLP because of loop-carried dependencies.	0	identified
	18	P PARTITIONI		\src\blackScholes.cpp	Loop-carried dependency on variable mt_rng [WAW]	0	
	19	P PARTITIONI		\src\rng.cpp [67:67]	Loop-carried dependency on variable tmp [RAW]	0	
PLP	20	PARTITIONING		\src\rng.cpp [83:95]	The loop (83:95) presents no beneficial DLP for FPGA	0	
	21	A PLP					
	22	HLS		\output\codegen\hls\src\	HLS pipeline pragma inserted for the loop	0	
DLP	23	PPARTITIONING		\src\rng.cpp [83:95]	PLP parallelism available for loop (83:95).	0	
	24	🔺 😳 Loop		\src\rng.cpp [85:94]			
	25	h HLS		\output\codegen\hls\src\	HLS loop_tripcount pragma reporting 2 iterations, inserted for the loop	0	
	26	PPARTITIONING		\src\rng.cpp [85:94]	The loop has the following induction variable:	0	Automotio
	27	P PARTITIONI		\src\rng.cpp [85:85]	Induction variable: k	0	Automatic
	28	A DLP					tripcount
	29	HLS		\output\codegen\hls\src\	HLS unroll pragma with unroll factor of 2 and skip exit check inserted for the loop	0	
	30	P PARTITIONI		_\src\rng.cpp [85:94]	DLP parallelism available for loop (85:94). Unroll factor can be 2.	0	insertion

HW Optimization

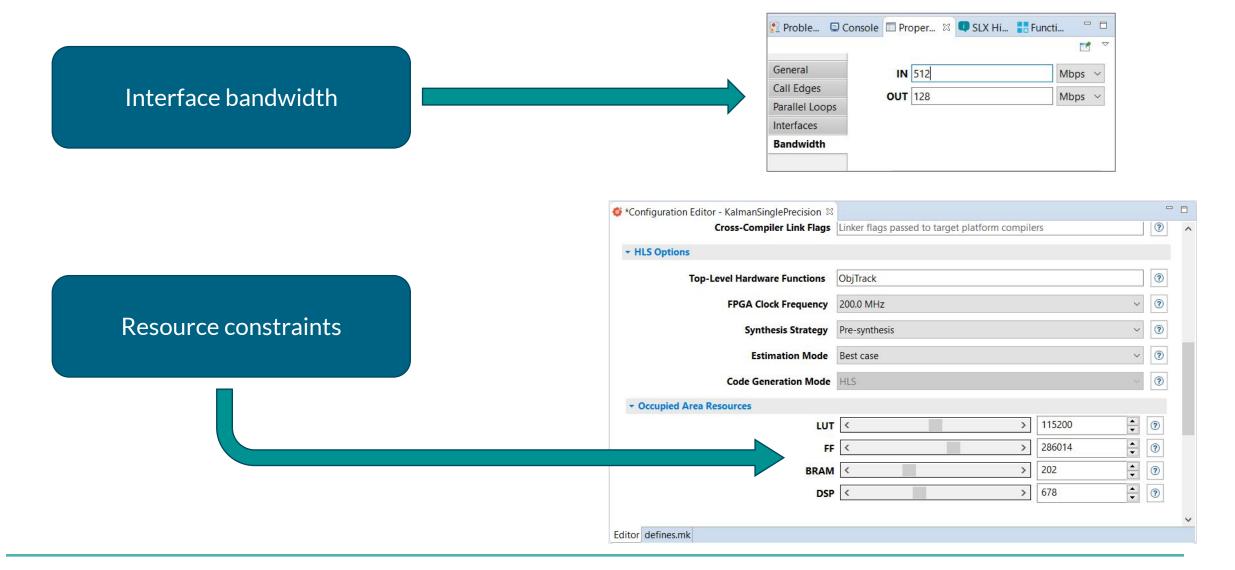
Standard Vivado HLS Flow

Pragma Exploration is Tricky

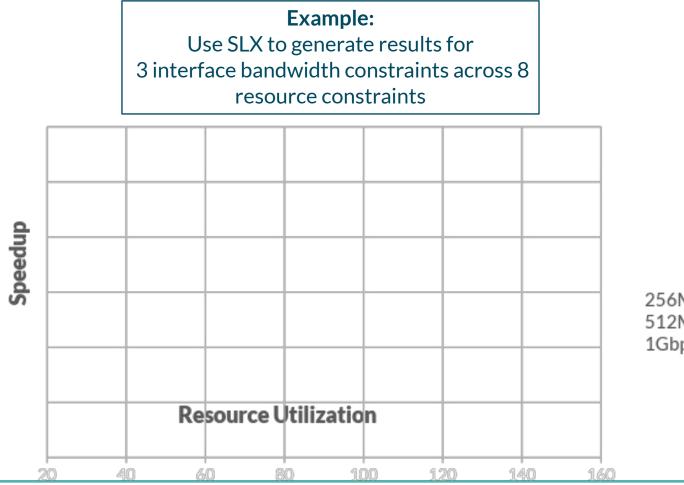

- Powerful, but requires detailed knowledge of code and Vivado HLS
- Even small pragma/parameter set leads to large design space
- Each combination needs to be synthesized with HLS
- Some combinations can lead to bloated implementations, extended synth times


Vivado/Vitis HLS + SLX FPGA Flow

SLX FPGA


- Analyzes and optimizes design based on constraints
- Automatically inserts optimal pragmas into source code
- Analysis tools assist with code refactoring

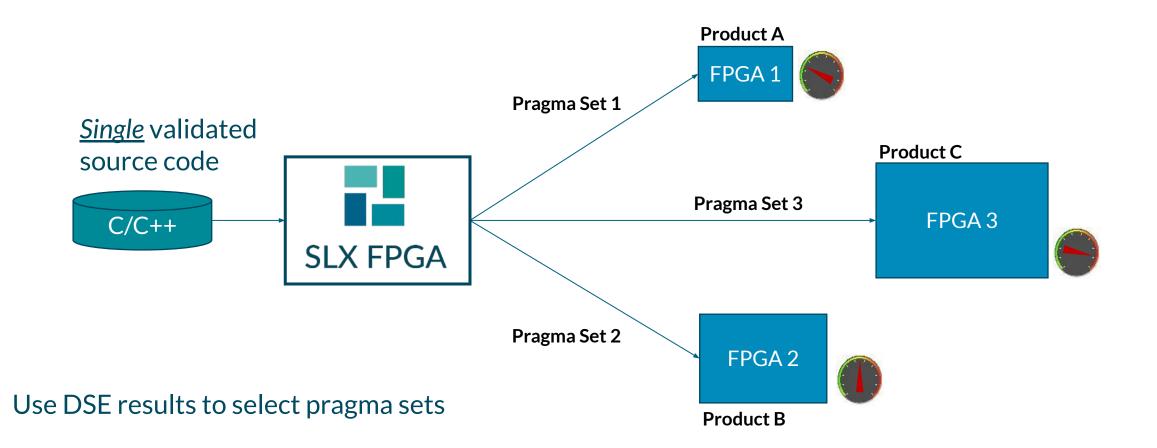
The SLX Optimization Engine



Constraints

Design Space Exploration (DSE)

- Evaluate multiple user configuration parameters
- Enables area/performance trade-off analysis


256Mbps 512Mbps 1Gbps

Kalman Filter Example

SLX Constraint (KLUTs)	Actual LUT usage from HLS (KLUTs)	Latency (1000s of clock cycles)
Tripcount only	5.8	4929
12	15.3	4696
24	17.2	3751
48	34.4	98
Unlimited	34.4	98

Latency vs. Area \$751 K Cycles **KLUTs**

IP Re-use

Pragma Insertion

Automatic Pragma Insertion

- HW optimization stage
 - Creates optimal pragma set

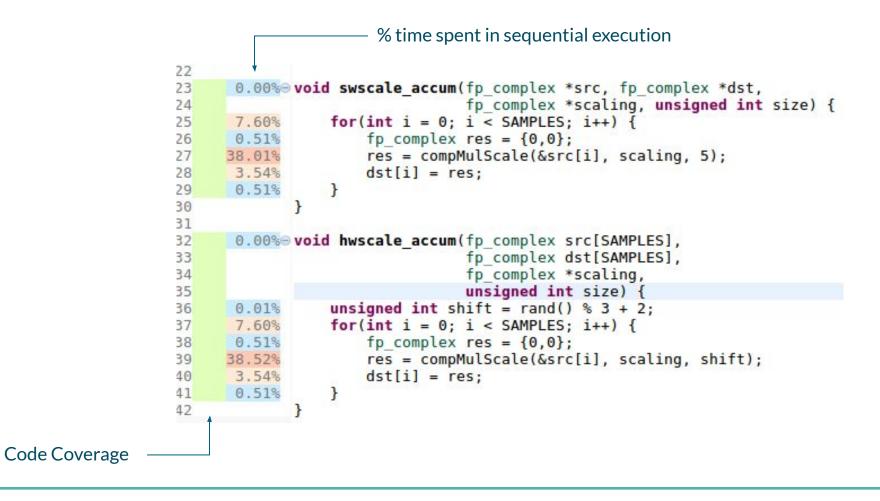
- Pragma Insertion Wizard
 - Inserts all generated pragmas into original source code
 - Allows designer full control over pragma insertion

SLX Code Transformation Wizard

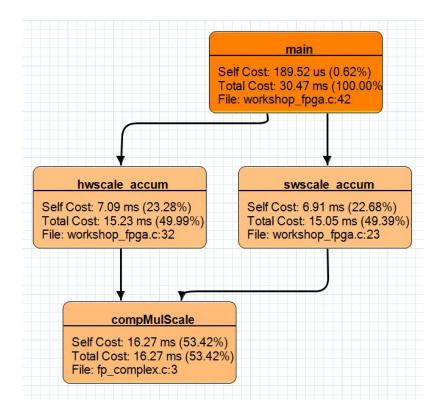
	Code Transformation Wizard	— 🗆 X
	Code Transformations Selection and Inspection	
		n of transformations, and generation of code by clicking on the 'Refresh' button. The second step enables the modification of
	the generated code. Click on 'Finish' to save the changes, or on 'Cancel' to abort code generation.	Configure Code Transformation Wizard
Enable/disable		
individual or	Enter File, Function, Refactoring Option name prefix or pattern(*,? or camel case):	Regular expression
groups of pragmas	✓ ✓ 曾 HLS array_reshape pragma ✓ i i ii ii	^
	 ✓ ✓ I < line:56> ✓ I e:81> ✓ I e:89> ✓ I e:91> ✓ I e:102> ✓ I e:106> ✓ I e:113> 	×
	CbjTrack.c	A 😣
Original/Updated	Original Source Code	Generated Source Code
code side-by-side	56tracked[i] = 0; 57	135 /* Main loop */
-	58 /* First, setup the figure */ 59 /* Process and plot 300 samples */	137 for (idx = 0; idx < 300; idx++) { 138// Loop annotated with HLS directives by SLX
view	60 /* Prepare plot window */	139 #pragma HLS loop_tripcount min=300 max=300
	61 /* Main loop */ 62 for (idx = 0; idx < 300; idx++) {	140 141// Loop annotated with HLS directives by SLX
	63 /* Get the input data */	142 #pragma HLS pipeline
	<pre>64 /* Copyright 2010 The MathWorks, Inc. */ 65 /* Initialize state transition matrix */ 66 /* % [x] */</pre>	143 144 // Loop annotated with HLS directives by SLX 145 #pragma HLS array_partition variable=b cyclic factor=6
	ζ (1* 0/ Γ., Γ */	
	3	Refresh Next Finish Cancel

individua groups of

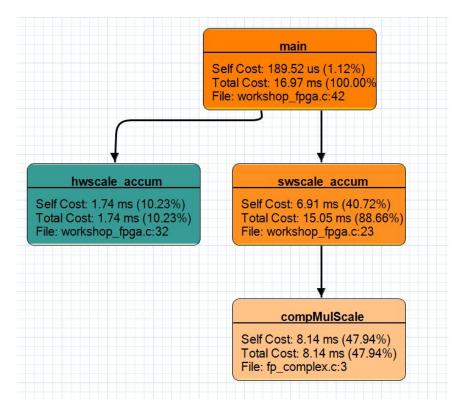
Automatic HLS Pragma Insertion


Function Mappin workshop fpga.c -C workshop fpga.c 🖾 🚠 thread0000-work >>, ovid hwscale accum(fp complex src[SAMPLES], fp complex dst[SAMPLES], fp_complex *scaling, unsigned int size) { Automatically unsigned int shift = slx fpga rand() % 3 + 2; for(int i = 0; i < SAMPLES; i++) { annotate the code // Loop annotated with HLS directives by SLX #pragma HLS loop tripcount min=1024 max=1024 with pragmas / Loop annotated with HLS directives by SLX #pragma HLS unroll factor=128 skip exit check fp complex res = $\{0, 0\}$; res = compMulScale(&src[i], scaling, shift); dst[i] = res; 🖹 Problems 📮 Console 🔲 Properties 🚹 SLX Hints 🛱 🧰 Code Analysis 🖷 Progress - -> Filter He egen/hls/spec/workshop fpga.c [35:35] Wrapper - Non-synthesizable call to function: rand has been replaced wi 🕐 **Direct link to** ga.c [32:39] Function hwscale accum has been implemented as a top-level hardware function with a local speedu 🕐 generated file egen/hls/spec/workshop fpga.c [37:39] HLS loop tripcount pragma reporting 1024 iterations, inserted for the l 🕐 egen/hls/spec/workshop_fpga.c [40:42] HLS unroll pragma with unroll factor of 128 and skip exit check inserted 🥑

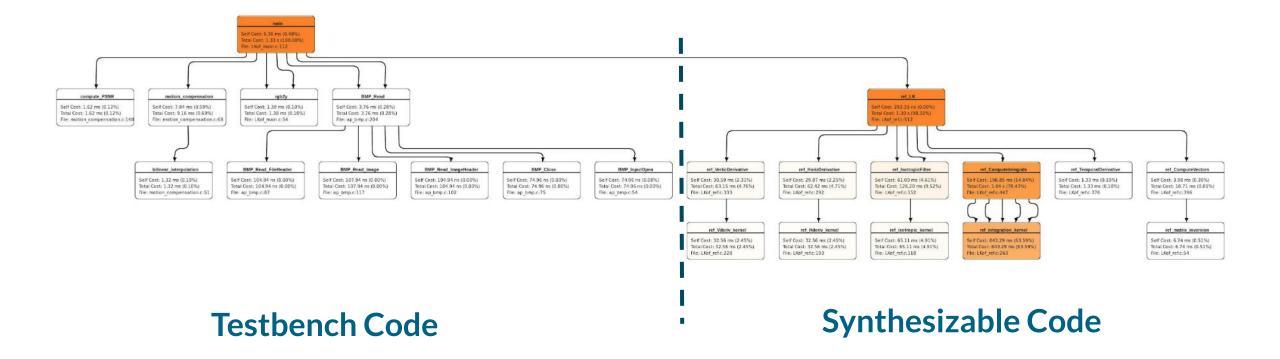
Deep Profiling and Analysis Tools


Hardware Aware Coding

- Pragmas can only go so far
 - Modifying the original code to be more hardware aware can lead to better performance and area
- Hardware aware refactoring requires insights into the algorithm.
- SLX Analysis tools provide detailed insights on the source code:
 - Code and Function Profiling
 - DLP and PLP detection
 - Data dependency detection
 - Software Call Graphs
 - Hotspot detection
 - Memory/variable analysis
 - Code analysis graphs


Code Profiling

Software Call Graphs with Profiling



Pre-Optimization

Post-Optimization

Hotspot Detection

Memory Analysis

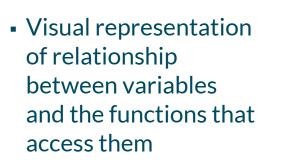
<

	🔆 workshop_fpga 🚽
	1 #include "fp_complex.h"
	<pre>2 3 3 fp_complex compMulScale(fp_complex *a, fp_complex *b, int scale) 4 {</pre>
	<pre>5 fp_complex c; 6 // c.real = fp_sub(fp_mul_scale(a.real, b.real, scale), fp_mul_scale(a.imag, b.imag, scale)); 7 fp2 temp = ((fp2) (a->real)) * ((fp2) (b->real));</pre>
	$\frac{1}{2} 8 \text{fp temp1} = ((1)2) (($
Integrated source	<pre>9 temp = ((fp2) (a->imag)) * ((fp2) (b->imag)); 10 fp temp2 = (int)((temp >> (N + scale)));</pre>
code highlighting	<pre>11 c.real = temp1 - temp2; 12 // c.imag = fp_add(fp_mul_scale(a.real, b.imag, scale), fp_mul_scale(a.imag, b.real, scale)); 13 temp = ((fp2) (a->real)) * ((fp2) (b->imag));</pre>

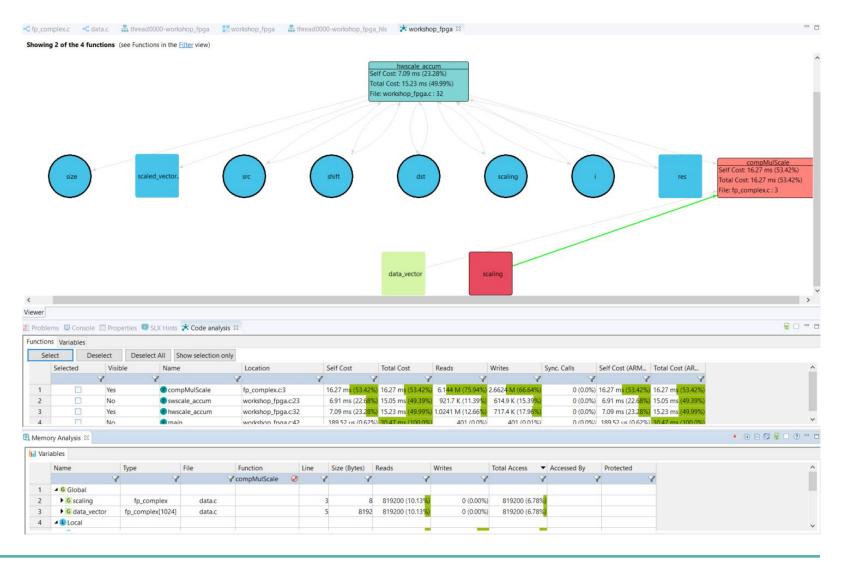
💼 Problems 📮 Console 🔲 Properties 🔍 SLX Hints 🧩 Code analysis 🗟 Memory Analysis 🛛

	Y	Y	Y	Y	Y	Y	Y	Y	
1	G Global								
2	G data_vector	fp_complex[1024]	data.c		5	8192	819200 (10.13 <mark>%)</mark>	0 (0.00%)	819200 (6.78
3	G scaling	fp_complex	data.c		3	8	819200 (10.13 <mark>%)</mark>	0 (0.00%)	819200 (6.78
4	🕨 🗄 Heap								
5	▲ Local								
6	▲ L temp	fp2	fp_complex.c	compMulScale	7	8	819200 (10.13 <mark>%)</mark>	819200 (20.5 <mark>1%)</mark>	1638400 (13.56
7	▲ temp		fp_complex.c	compMulScale	7	8	0 (0.00%)	204800 (5.13%)	204800 (1.70
	.∞ temp		fp_complex.c	compMulScale	8	8	204800 (2.54%)	0 (0.00%)	204800 (1.70
9	_ temp		fp_complex.c	compMulScale	9	8	0 (0.00%)	204800 (5.13% <mark>)</mark>	204800 (1.70
10	▲ temp		fp_complex.c	compMulScale	10	8	204800 (2.54%)	0 (0.00%)	204800 (1.70
11	<mark>▲ temp</mark>		fp_complex.c	compMulScale	13	8	0 (0.00%)	204800 (5.13% <mark>)</mark>	204800 (1.70
12	▲ temp		fp_complex.c	compMulScale	14	8	204800 (2.54%)	0 (0.00%)	204800 (1.70
13	<mark>▲ temp</mark>		fp_complex.c	compMulScale	15	8	0 (0.00%)	204800 (5.13% <mark>)</mark>	204800 (1.70
14	_ temp		fp_complex.c	compMulScale	16	8	204800 (2.54%)	0 (0.00%)	204800 (1.70
15	▶ 🕒 a	fp_complex*	fp_complex.c	compMulScale	3	8	819200 (10.13 <mark>%)</mark>	204800 (5.13% <mark>)</mark>	1024000 (8.48
16	▶ 🕒 b	fp_complex*	fp_complex.c	compMulScale	3	8	819200 (10.13%)	204800 (5.13% <mark>)</mark>	1024000 (8.48
17	▶ ● scale	int	fp_complex.c	compMulScale	3	4	819200 (10.13%)	204800 (5.13%)	1024000 (8.48

Access statistics

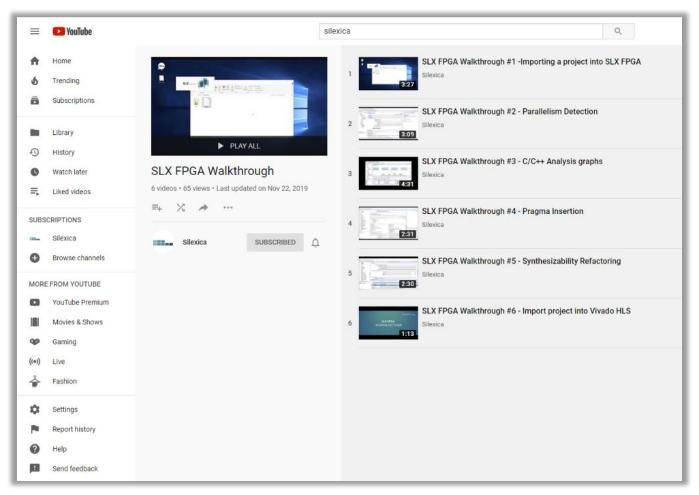

Size

SILEXICA


Location

34

Code Analysis Graph

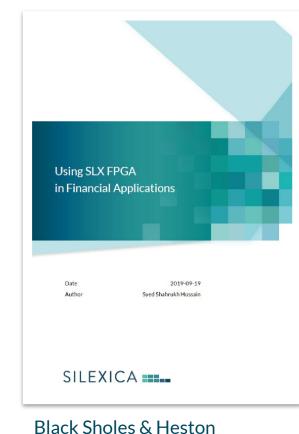

- Filters allow control over the details in the graph
- Simultaneous variable and function access information

Collateral & Real World Results

SLX FPGA Getting Started

SLX FPGA Walkthrough Videos

SLX FPGA – Application White Papers



600x Speed-up with SLX FPGA

Kalman Filter

29x Speed-up with SLX FPGA

Reduce Development Time with SLX FPGA

Design Phase	Done by hand (Days)	SLX Optimized (Days)
Clean up code to be synthesizable	1	0.5
Synthesize first HW	1	1
Refine Synthesis by inserting pragmas	10 days	1
Repeat last step until satisfied with results		2
Validate using C/C++ Testbench	0.5	0.5
Create IP	0.5	0.5
Total time	13*	6

- Example from expert HLS user
- Design was relatively small vision processing algorithm (~4KLUTs)
- Final performance achieved with HLS+SLX was better than RTL.

Adam Taylor Blog – Influential Xilinx Blogger

High Level Synthesis Made Easier!

Adam Taylor Following Sep 13 · 4 min read

I have recently been evaluating the SLX FPGA tool from <u>Silexica</u>. If you are not familiar with <u>SLX FPGA</u> it is designed to work with both Vivado HLS and SDSoC.

"What is interesting to me having worked considerably with HLS over the years is how easy the insertion of pragmas was with SLX FPGA. HLS optimization can be a challenging, iterative and time-consuming process, **SLX FPGA made this much simpler.**"

SLX Release Schedule

Release	Quarter	Date
SLX v20.1	Q1	April 6, 2020
SLX v20.2	Q2	June 29, 2020
SLX v20.3	Q3	September 21, 2020
SLX v20.4	Q4	December 14, 2020

Summary

- SLX FPGA accelerates the journey from C/C++ to Hardware by removing many of the roadblocks of using HLS
- SLX FPGA takes the guesswork out of using HLS
- SLX FPGA can help you maximize the performance of your designs in a fraction of the time

Silexica is ready to help you get started with SLX FPGA today!

