
MBSE 2020 / SECESA 2020

Applications of Model-Based Systems Engineering for JAXA’s Engineering Test
Satellite-9 Project

Yuta Nakajima1*; Tsutomu Fukatsu2

1Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan, nakajima.yuta@jaxa.jp
2Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan

1. Introduction

JAXA’s Engineering Test Satellite-9(ETS-9) project team is applying Model-Based Systems Engineering
approach to the interface management of flight system development. Launching in the early 2020s, ETS-
9 demonstrates the all-electric spacecraft technologies for the next generation communication satellite
including the newly developed Hall Effect Thruster System as shown in Figure 1. The Hall Effect Thruster
System consists of the three main components: the thruster, the power processing unit (PPU), and the
propellant flow control module. The power processing unit controls and monitors thruster system
performance. The comprehensive understanding of a complex Hall Effect Thruster system is a challenging
issue for project systems engineers due to the complex interaction between components developed by
different providers.

Figure 1: Artist concept for ETS-9 Mission (Left) and performance test of Hall Effect Thruster (Right)

2. How do we manage the complexity?
The main idea of our approach is a comprehensive system analysis supported by a system model and

interactive digital artifacts that visualize system analysis results extracted from a SysML system model.
We manage the system complexity by using the formalized descriptions of system requirements, behaviors
and behavior allocations to system elements with SysML. We describe the system behaviors as sets of
interactions between components by using the object flow of activity models. The object flow includes the
electric energy, the xenon gas, information and the force generated by the thruster. This behavior model
is expanded to the failure mode analysis by customised descriptions of the failure modes. We extract
systems engineering products as html based interactive digital artifacts from the SysML model by using
Python graph theory packages and data visualization packages. These digitalized systems engineering
products support systems engineers to understand and analyse the complex system. The flow of extracting
systems engineering products as an interactive digital artifact is shown in Figure 2. The prototype of
interactive digital artifacts that support the system analysis and the failure mode analysis are shown in
Figure 3 and Figure 4.

3. Conclusion
We present the practice of Model-Based Systems Engineering approach to the actual flight project

focusing on the interface management of the Hall Effect Thruster system. The proposed system model
and the interactive digital artifacts guide the system level analysis of the Hall Effect Thruster System
supported by model queries and visualization of the hierarchical structure of system architecture. We find
the effective use of MBSE application to the failure mode analysis in the implementation phase of the ETS-
9 flight project.

mailto:nakajima.yuta@

MBSE 2020 / SECESA 2020

Figure 2: Flow of extracting interactive digital artifacts from a SysML model

Figure 3: Interactive Sankey Diagram supports understanding a system of interest

Figure 4: Interactive radial failure mode hierarchy maps created by Python and D3.js

ESA UNCLASSIFIED - Releasable to the Public

Modelling Avionics Interfaces and Generating Interface Control
Documents for the Propulsion Subsystem of the MPCV European

Service Module

Delia Cellarier, Antonio Preden
MPCV-ESM Engineering Team, European Space Agency, Noordwijk, the Netherlands

delia.cellarier@esa.int

Abstract ― In complex systems such as the
MPCV European Service Module (ESM),
Interface Control Documents (ICDs) are key
system engineering artefacts that are used to
specify and control interfaces. In current practice,
ICDs are largely created, maintained and verified
manually, leading to tedious and error-prone
activities. A model-based approach can be

implemented to use a model as “single source of
truth". It thus enforces consistency and can be a
basis for generating ICDs. This paper explains
why and how this approach was applied with
Capella to the avionics interfaces of the ESM
Propulsion Subsystem.

Keywords ― Model-Based System Engineering,
Interface Control Documents, Capella

1. Context and Motivations

Interface management is a crucial system
engineering activity for space projects. As
described in the dedicated ECSS standard, its

objective is “to achieve functional and physical
compatibility amongst all interrelated items in the

product tree” [1], ensuring that the different
components will be integrated into a working
system. It is particularly challenging for complex
systems such as spacecrafts, involving many
parties (space agencies, main contractors and
suppliers) and disciplines.

This is the case for the European Service Module

(ESM), ESA’s contribution to NASA’s Orion
spacecraft (MPCV). Built by main contractor
Airbus Defence and Space, with many other
companies supplying components, it provides
propulsion, power, thermal control, and water and
air for astronauts. Several spacecrafts will be
provided to support the Artemis missions , and
the third one is currently in design phase.

In this context, Interface Control Documents
(ICDs) are used throughout the lifecycle to specify
and control interfaces of subsystems. Their role in
the ESM development makes them difficult to
manage, though. Indeed, because of both their
technical and contractual aspect, ICDs are subject
to a standardized change process that can create

inconsistencies between documents. Moreover,
information is sometimes redundant between ICDs
of different levels (e.g. Propulsion subsystem and
equipment ICDs) or separated in data ICDs
specific to some equipment. Maintenance and
verification of those ICDs are for now largely done
manually, making it difficult to keep consistency.

The purpose of this work is to implement a model-
based approach, using MBSE technologies to
effectively manage information and generate ICDs
from a model [2]. This approach is evaluated
through a case study, the avionics interfaces of the
ESM Propulsion Subsystem, with the objective of

being applicable in the project’s future.

This paper will first give an overview of the
process which led to the selection of Capella as
MBSE solution. It will then describe the first
results and the methodology applied to the whole
project.

2. Trade-off Between MBSE

Solutions

The project started with a study and a trade-off
to choose the most appropriate MBSE tool. First
of all, requirements have been defined according
to project's needs (e.g. document generation
features) and ECSS standards, and then refined
through interviews of projects experts in various
disciplines.

A state of the art revealed similar approaches in
space projects, all based on SysML. However, the
authors either extended SysML with a profile [3],
the language being too generic for their needs, or
focused on software interfaces [4]. Some
initiatives at ESA were also explored:
- Electronic Data Sheets, for Data Handling

and Electrical interfaces of spacecraft
avionics;

- ESA SysML Profile, developed by ESA
MBSE Core team for System Engineering of
space projects.

Technology readiness, coverage of multi-
disciplinary interfaces and understanding for
newcomers to MBSE narrowed the choice of an
MBSE tool to Capella and Enterprise Architect

ESA UNCLASSIFIED - Releasable to the Public

extended with ESA SysML Profile. A trade-off
based on a mock-up has been made between those
two solutions to evaluate them against our
requirements. Both tools offer most of the desired
features, but Capella was preferred, among other
things, for its accessibility and its customization.

3. Methodology to Manage

Interfaces with Capella

The mock-up under Capella included two avionics
boxes and a few electrical interfaces. Thanks to
M2Doc, an open-source add-on by Obeo to
generate MS-Word documents from Capella
models, parts of an equipment ICD could
successfully be generated. M2Doc uses Word
templates written in a language built on top of
Acceleo Query Language (AQL) for querying the
model. This enables flexible and custom document
generation.

As a consistent implementation is necessary to
efficiently generate ICDs, scaling-up to the whole
Propulsion Subsystem implies a more systematic
approach. A mapping has thus been made between
types of avionics interfaces (part of Mechanical,
Thermal, Electrical or Numerical ICDs) and
model elements (e.g. Physical Link, Component
Exchange, etc.). On another hand, M2Doc
templates can become complicated for non-
practitioners when the model grows in complexity.
To make them easily modifiable by end-users,
M2Doc template patterns and services (i.e. Java
functions) will be developed.

Our case study involves some specificities
compared to a generic approach in Capella.
Indeed, the model and generated ICDs are realized
by shadow engineering, showing how Capella can
be introduced in a project where the design is
already well advanced and documents remain key
deliverables. In this case, the model focuses on an
effective management of information and
interfaces with existing artefacts, such as the
Harness Database, rather than trying to replace
everything. Concerning the ARCADIA method,
considering that a design was already existing, the
usual steps were not followed and we started
directly with the modelling of the Physical
Architecture.

An interesting feature of Capella is the possibility
to extend it thanks to the viewpoint technology
provided by Capella Studio. It allows to adapt or
add definition of new data, diagrams, user
interfaces or validation rules. In our project, it can
be used to help experts from each discipline
focusing on their interfaces and controlling them.

Eventually, as traceability throughout the life
cycle is a major concern, existing Viewpoints will
be used to demonstrate its feasibility in Capella:

the Requirement Viewpoint can specify links with
data extracted from Interface Requirement
Documents, while the V&V/TestMeans
Viewpoint (a commercial add-on by Artal) can
refer to test campaigns.

4. Conclusion and Future Work

Through a study of related work and a detailed
trade-off, MBSE and Capella in particular have
proven to be a promising solution for specifying
and controlling interfaces as well as automatically
generating ICDs.

At the time of writing this abstract, ongoing work
is carried out to extend the model to all avionics
interfaces of the ESM Propulsion Subsystem, by
applying a tailored methodology and by
implementing artefacts for ICDs generation in
Capella. A Viewpoint dedicated to interfaces will
potentially be developed. Results will be compared
with the ones obtained by industry with the
standard approach. The expected outcome is that,
providing initial efforts to endorse MBSE,
management of interfaces will be facilitated, even
for an advanced document-based project.

Future work would involve applying this concept
to a real project, so lessons learned from this
experience will be exploited to provide
recommendations for the integration of modelling
activities in current processes.

References

[1] ECSS, ECSS-E-ST-10-24C – Interface
Management, June 2015.

[2] D. Cellarier, ESA-MPCV-RP-0060 YGT
Report: Modelization of Avionics Interfaces.

[3] E. Fosse and C. L. Delp, “Systems Engineering

Interfaces: A Model Based Approach,” in
IEEE Aerospace Conference Proceedings,
2013.

[4] S. J. I. Herzig, R. Karban, G. Brack, S. B.

Michaels, F. Dekens and M. Troy, “Verifying
Interfaces and Generating Interface Control
Documents for the Alignment and Phasing
Subsystem of the Thirty Meter Telescope

from a System Model in SysML,” Proc. 8th
Modeling Syst. Eng., Project Manage.
Astron., vol. 10705, no. Art. no. 107050V,
2018.

Applying MBSE across Flight and Ground
on Small and Nano-Satellite Missions

Peter Mendham
Bright Ascension Ltd, Scotland, UK

peter@brightascension.com

The so-called “New Space” industry represents a particularly challenging environment for
software. This paper presents the commercial development and application of an Model-Based
Software Engineering (MBSE) solution to a diverse range of small and nano-satellite missions.
Particular attention is paid to the successful use of this solution across both flight and ground
software, and the benefits this has brought.

The paper concludes by summarising lessons learned and looks to future developments which
will expand the scope and capabilities of the solution.

Commercial Context
There is currently a global boom in the development and application of small satellites, usually
characterised as those with a mass between 1kg and 50kg. In many cases, the approach taken
to the development and deployment of these satellites is one that accepts a higher risk in
product assurance for significantly lower development costs and faster development times.

Characteristics of missions in this category typically include:

• rapid development times, commonly 6-12 months per satellite and 1-2 years from
conception to being able to offer an initial commercial service;

• large numbers of satellites, with constellations of 10-50 satellites being common
targets although there are high-profile cases of organisations aiming to deploy hundreds
of satellites;

• a high degree of heterogeneity between satellites in a constellation;

• complex payloads which embed much of their functionality in software;

• use of Commercial Off The Shelf (COTS) hardware from a wide range of vendors;

• the need for highly automated operations, typically aiming for unattended
operations for the duration of a week at a time; and

• use of commercial Ground Station Network (GSN) providers.

This places consequent demands on the mission software, across both flight and ground.

User Needs
Space-based service developers utilising small and nano-satellites are facing a range of
challenges which give rise to demands on the mission software:

• availability, software must be available early (at least partially) to support
development and test;

• flexibility, requirements during development change as design is iterated;

• rapidity, overall schedule is short and software must be ready quickly;

• capability, many spacecraft functions are implemented in software;

• operability, software must make it easy to achieve mission and service delivery;

• reliability, software is mission-critical and must be robust;

1

mailto:peter@brightascension.com

• scalability, flight and ground software must integrate to form part of a complete
system which may include multiple, complex spacecraft and ground segments.

Addressing these challenges places great demands on software, resulting in complexity both in
the software itself and in the process of applying it to the mission or service.

The GenerationOne Approach
In response to these needs Bright Ascension have developed a technology called
GenerationOne which combines:

• model-based software engineering, permitting machine comprehension of software
architecture and the use of tools to assist with software development and
product/quality assurance;

• component-based software engineering, enabling reuse of software across a wide
range of scenarios and applications, combining software with its documentation and
tests within libraries; and a

• service-oriented architecture, providing consistent and well-defined semantics for
component interactions at all levels, enabling low-level aspects of the system to be
expressed as components whilst improving operability.

GenerationOne technology comprises a meta-model definition, a language-independent set of
service and protocol definitions, cross platform tools and framework implementations for target
platforms. The GenerationOne approach permits almost the entirety of a software system to be
expressed as components, from hardware drivers and communications protocols to
applications. The underlying framework is lightweight and most components are portable
across platforms and operating systems.

The component and service model is specifically designed to be applicable across both flight
and ground environments with the model capturing both ground- and flight-based functionality.
The encompassing nature of the model also extends to the life-cycle, with the model
representing the system from early payload prototyping through development, Assembly
Integration and Test (AIT) through to in-orbit operations.

Developing and Implementing GenerationOne
Bright Ascension’s primary focus for GenerationOne has always been to solve industry
problems. As such, the technology was not fully designed up front, but instead has been
developed iteratively, with improvements, additions and changes based on the experience
gained from deployment in operational missions. Here the technology has benefited from the
rapid launch cadence of the small and nano-satellite industry with twelve on-orbit spacecraft
making use of GenerationOne, with many more in development and some slated for launch this
year.

GenerationOne has been used by customers on all six continents across a wide variety of
computing environments, including as flight software running on a number of COTS Onboard
Computers (OBCs). The process of supporting so many target platforms has introduced a
number of improvements and revisions to permit optimisation for low resources, and flexibility
to different processor and operating system architectures.

Mission Case Studies
It is perhaps illustrative to highlight two missions which have benefited from the use of
GenerationOne technology.

The KIPP and CASE spacecraft, intended to pilot Kepler Comminations’ Internet-of-Things (IoT)
constellation are 3kg nano-satellites flying a single, highly-capable Software Defined Radio
(SDR) payload. With a strong commercial case, these spacecraft were developed by AAC Clyde

2

Space within 8 months from concept to launch shipment. Bright Ascension used GenerationOne
to develop and deliver flight and ground software in 5 months using 6 months of engineering
time. The model developed from the flight software was ingested into the ground software for
immediate use with minimal configuration effort necessary.

Faraday-1, the first of In-Space Space Missions’ hosted payload spacecraft offers different
challenges in terms of complexity and operability. Despite having a mass of less than 10kg,
Faraday-1 includes six payloads from different organisations, including four SDRs each of which
hosts multiple software applications, effectively “massless payloads”. Faraday-1 is a highly
distributed system, with a total of 6 OBCs of three different architectures and operating
systems requiring 13 software images. The complete system is captured in a single model
which can be viewed and used by both development tooling and the Mission Control Software.

Benefits of a Coordinated Flight-Ground Approach
The interface between the spacecraft and the ground segment sits within the software
functions responsible for managing and delivering the mission and overall service. As such,
although it is traditional, selecting the spacelink as the position for a significant division in
system composition and even development responsibilities is a short-sighted decision leading
to poor architecture and inefficient mission delivery. There are many reasons for this division
spanning technical, organisational, commercial and political concerns. Within small and nano-
satellite missions, most of these drivers do not exist, leaving technical arguments at the
forefront.

There is no doubt that many of the challenges faced by flight and ground software are different,
often generated by the distinct computing environments: from low-resource, real-time
embedded systems, to enterprise systems with many simultaneous human operators handling
large quantities of data. However, with GenerationOne, Bright Ascension has shown that a well
designed architecture can accommodate these technical differences within one coherent
system. This gives significant advantages for all aspects of system design, development,
operation and maintenance.

Key to these cross-system efficiencies is the ability to capture the complete system in a single
model which describes the functional architecture and its relationship with the physical system.
The model acts as the basis for increased operability as well as the basis for a domain model
which can be used by automation systems, including planning.

Conclusions and Future Work

The application of MBSE to Bright Ascension's GenerationOne technology has been
instrumental in creating a technology which facilitates the rapid development and efficient
operation of complex missions. Key to this has been the development of a single coherent
architecture and meta-model which can be utilised across both flight and ground systems.

The development of GenerationOne has been incremental and is far from complete. Current
improvements are focussed on scalability, operability and automation, impacting all aspects of
GenerationOne from the meta-model through to standard service definitions. Once this next
phase of development is complete, it is expected that the opportunity will be taken to
supplement the model with a more capable range of tooling and support infrastructure, offering
benefits to a wide range of stakeholders involved in mission and service delivery.

3

SECESA 2020

First lessons with a Model-Based System Engineering approach for nanosatellites

B. Segret1*; R. Jain1, B. Mosser1,

1Paris Observatory – PSL University, Meudon, FRANCE,
*Primary author contact details: boris.segret@observatoiredeparis.psl.eu

1. Abstract

Model-Based System Engineering (MBSE) is promising to support space instrumentation. CCERES [1]
set up an MBSE approach for the early phases of scientific nanosatellite missions with free tools only. Our
mission analysis covers more than only the trajectory of a space mission: it addresses the scientific
coverage as the main driver, then also its coupling with the functional modes, the pointing requirements,
the data volume and the power. The early requirements for these main functions are translated in tiny
models, i.e. pieces of codes in python or GNU Octave, whose outputs are formatted to get displayed in
the CNES’ VTS display, a free tool available for Windows and Linux. An in-house software called DOCKS
has been developed in python and made open-source. DOCKS simplifies some parts of modelling with
the same philosophy of producing outputs to VTS display. We will present some of our scientific
nanosatellite projects translated in MBSE terms with VTS displays, in Earth orbit or in deep space, and
discuss about their advantages and limitations. We will also report on their application during Concurrent
Engineering sessions. As a result, the traditional studies and tools for system analysis at platform level are
certainly not deemed deprecated. Our MBSE approach was made possible and necessary in a CubeSat
context: the CubeSat form factor simplifies many aspects and also provides the space laboratories with
opportunities for entirely new measurement concepts and not only for payload development. The main
lesson of this MBSE approach is to guide an instrumentation team to increase its Concept Maturity Level
(CML) from CML 0 to CML 4 typically, and to install an efficient dialog among all actors, within a project
and with its partners from the New Space or from the traditional space sector.

2. References

Acknowledgments: C²ERES ([1], pronounced “C-CERES”, Figure 1) has been hosted by Paris
Observatory [2] since 2014 and funded by the French Laboratory of Excellence ESEP [3] under the
grant ANR #2011-LABX-030 in the “Investissements d’Avenir” and by PSL University Paris ([4]).

[1] C²ERES, Space pole of PSL University Paris (Figure 1): https://cceres.psl.eu/?lang=en

[2] Paris Observatory: https://www.observatoiredeparis.psl.eu/?lang=en

[3] Exploration Spatiale des Environnements Planétaires (ESEP): http://www.esep.pro/en/

[4] Paris Sciences Lettres (PSL Université): https://www.psl.eu/en

Figure 1: C²ERES is the Space Pole of PSL University Paris.

mailto:boris.segret@observatoiredeparis.psl.eu
https://cceres.psl.eu/?lang=en
https://www.observatoiredeparis.psl.eu/?lang=en
http://www.esep.pro/en/
https://www.psl.eu/en

Stepwise adoption of model-based solution for a full MBSE transition, an Industrial perspective
MBSE-2020 workshop ESA/ESTEC

Stepwise adoption of model-based solution for a full MBSE transition, an Industrial perspective

D. Perillo1, C. S. Malavenda2
1 Eng David Perillo PhD, ESA/ESTEC, Noordwijk, Netherlands
2 Eng. Claudio Santo Malavenda PhD MBA, ELT, Rome, Italy
Email: david.perillo@esa.int, claudosanto.malavenda@elt.it

Abstract — In this abstract we will discuss the need to provide European Space Companies and Research Institutions with a
European framework for model-based engineering (MBE) and model-based system engineering (MBSE). Our assumptions will be
motivated by the Lesson Learned from research programs performed by Elettronica SpA (ELT), one of the most referenced
European players in the production of Electronic Warfare equipment (EW), in its transition toward model-driven engineering
(MDE) and subsequently to MBSE as a mean to increase quality, to increase productivity and to reduce costs.

1 Introduction

According to the original definition given from INCOSE, Model Based
System Engineering (SE) is the formalized application of modeling to
support system requirements, design, analysis, verification and
validation activities beginning in the conceptual design phase and
continuing throughout development and later life cycle phases.
In an organization that adopt a mature model-based workflow, models
at different levels of abstraction coexist in an interwoven structure held
together by system-level architectures that act as a backbone for SE
activities. For instance, it shall be possible to graphically navigate a
system level architecture, traversing all the subsystems and visualizing
inner details of software-firmware interfaces, as well as conducting
Reliability, Availability, Maintainability, and Safety (RAMS) analysis
in an almost automated manner by means of dedicated model-checking
techniques (i.e. COMPASS toolset https://essr.esa.int/project/compass).

2 Adopting MBSE

From an Industrial perspective, to become an effective MBSE
practitioner requires a significant investment [1] and the time needed to
return from the investment can be hard to calculate in advance. In
addition, this transition entails to overcome a cultural resistance to
change within the organization [2]. In some cases, the road to create a
Company culture on model-based technologies can be rough and steep.
That is partially due to the lack of experience with formal languages and
object-oriented thinking for engineers that usually have different
specialties and partially to the absence of a commercial general-purpose
solution capable to support every engineering domain aspect. This
means that companies are often left alone with the burden to select and
tailor model-based tools and methodologies on their specific needs and
value chain analysis. It is therefore evident that MBSE is producing a
major transformation in the way of doing system engineering, which
can be probably compared with the advent of personal computers in the
workplace in the late 70s and 80s.

2.1 Facing Cultural Resistances

When it turns to overcoming the cultural resistance to the adoption of
models as means to enclose system and subsystem details, it should be
kept in mind that models are more than just drawing:
 Models can act as single source of truth, whereas natural

languages and document-based approaches are subject to
interpretation and misunderstanding.

 Model based toolchains can be extended incrementally, according
to perceived benefit of users and stakeholders.

 Models can be a turnkey solution to manage complexity by means
of Views and filters.

 Formal languages are a powerful mean to stimulate reasoning and
evaluating alternatives.

 Models can be automatically processed to produce artefacts, such
as code and documentation, as well as to verify integrity and
overall consistency of the finalised architecture.

One possible approach to build a Company culture around model-based
engineering is to initially leverage model-driven solutions to automate
processes that have a direct return on investment. Software engineers
can be a key element in this first stage of the transformation process as
they are usually keen to exploit model-driven solutions to automate
implementation and verification of software and firmware components.

2.1 The ELT case

As described in [3], a similar approach was followed by Elettronica Spa
(ELT) in his transition toward model-driven engineering (MDE).
Motivated by the need to increase quality, to increase productivity and
to reduce costs, ELT has decided to evolve and update the design and
development process with a model-driven approach. The transition has
begun in 2010 with the implementation of a Company-internal model-
based toolchain to automate coding and documentation of software
interfaces, operative system drivers and verification facilities such as
Wireshark-dissectors, simulators and emulators.

Figure 1- model-driven workflow implemented in ELT

The toolchain is also integrated with Simulink, for code-generation of
behavioural code, and with IBM Rational Doors to trace architectural
decisions against system and sub-system requirements. However, since
Electronic Datasheets (CCSDS EDS) were not publicly available in
2010 and ELT needs were peculiar to EW systems, both the metamodel
and the model-based toolchain have been built from scratch leveraging
the Eclipse Modeling Framework (EMF) and related Ecore
technologies (Acceleo, QVT) for model to text (M2T) and model to
model (M2M) transformations. The SysML models representing the
System were defined according to Platform-based design (PBD)
principles. As such, design elements were decomposed into three model
hierarchies: a Functional architecture, an Execution Platform and a third
hierarchy of elements (called Mapping model) representing the
deployment of the Functional architecture onto the Execution one. The
genericity of SysML model elements were restricted applying
Stereotypes from MaRTE®, which is an OMG® Profile specific for
Real-Time Embedded Systems. The implementation was conducted
internally by experienced ELT software engineers in collaboration with
the TeCiP institute of Scuola Superiore Sant’Anna. Although this
solution enabled a first transition in the adoption of models as a mean to
encapsulate and share knowledge among software stakeholders, it must
be mentioned that models are not just about software. One of the main
concerns of an Engineering Company shall be to introduce system
engineers to system-level modelling, adopting formal languages as a
vehicle of information and as a mean to enrich technical documentation.

Stepwise adoption of model-based solution for a full MBSE transition, an Industrial perspective
MBSE-2020 workshop ESA/ESTEC

3 A project example with MBSE

Bolstered by the achieved consensus with MDE, ELT has experimented
MBSE on internal pilot projects (partially or totally self-financed) in the
context of the Company innovation process named BELT (short form of
Building ELT together). The System of Systems (SoS) adopted as use-
cases for the modelisation are aimed to support armed forces in the
operations of integrated missions that cover the following domains:

- Electronic Warfare
- Spectrum Management
- Signal intelligence
- Cyber Operation

In this context, MBSE can provide a consistent advantage to manage the
complexity caused by: the intrinsic scalable and reconfigurable shape of
these SoS; the high number of actors (internal and external to the
System); the high number of program’s stakeholders with vested
interest to be kept into consideration along the project lifespan.

The model-based approach selected for this purpose was ARCADIA
(ARChitecture Analysis and Design Integrated Approach) with its open-
source model-editor Capella and the Requirements Viewpoint to import
requirements from IBM Doors. In one of the MBSE experimentations
performed within BELT, a team of six system-engineers with different
specialties and not prior knowledge of modelling based languages,
supported by one Modeling Expert and one Project Manager, managed
to enclose a portion of the system knowledge into a model-based
representation with enough details to run basic model-checking
activities on it. The Mission/Capability diagram in figure 2 shows some
of the classical challenges that EW SoS are required to perform in a
reliable and accurate manner: self-adaptation to the electromagnetic
(e.m.) environment, tactical awareness, mission and data management
and platform protection. The System Architecture diagram provided as
example in figure 3 provides a quick overview of three simplified
Functional Chains associated to environment-monitoring Capability.
Specifically, the detection, classification and identification of Infrared
(IR), Laser and Radar guided weapons (also called Targets) in a
synthetic representation of the electromagnetic environment.
Major benefits reported at the end of the design stage were:
 Mapping of targeted use cases toward the developed architecture.
 Inheriting interfaces from high-level to system-level architecture.
 Automatic verification of interfaces consistency.
 Justification of the physical architecture toward the functional one.
 Impact analysis to evaluate complete and consistent propagation

of requirements toward the final architecture.

In particular, at the end of the medialisation activity it had been possible
to investigate a number of issues just by validating the model. We
identified the absence of a physical connection to carry data exchanged
among functions originally thought to be deployed on two unconnected
nodes. This issue were tackled restructuring functional deployment and
physical architecture so as to optimise the overall design in terms of
costs and performances. The Arcadia methodology and Capella model-
editor resulted of easy understanding for the team. An initial two-weeks
training period was enough to make the team self-confident and
autonomous in the basic modelling activities, which were performed in
accordance to processes specific for a document-centric SE workflow.
This experience demonstrated how the adoption of formal notations
could support system engineers to reason about architectural choices
and their impact on stakeholders.

4 Conclusions

A takeaway message from this experience is the possibility to use
model-driven solutions to automate processes that have a direct return
on investment and do not need the full MBSE to be implemented at the
beginning. Given the additional cost of creating models, it is of primary
importance to create a modelling ecosystem in which models can be
exploited to automatically produce valuable artefacts such as low-level
embedded code, documentation, adapters, simulators and other
supporting facilities for Validation & Verification purposes. As a way
forward, the availability of model-based solutions readily available to
European Space Companies, such as the Open-Source Reference
Architecture (OSRA), could enable a quicker transition to MBE and
MBSE as a strategy to increase quality and productivity while reducing
development and maintenance costs.

Acknowledgements

This abstract takes contributions from the ELT website and
presentations internal to ELT for which we thank Daniela Pistoia
(Corporate Chief Scientist at ELT), Antonio Tafuto (Head of Research
& Innovation at ELT) and Francesco Chirico (Principal Engineer at
ELT). Additional guidelines were provided by Andreas Jung, Javier
Fernandez Salgado and Marcel Verhoef from ESA/ESTEC.

References

[1] Parrott, E., Trase, K., Green, R., Varga, D., Powell, J. NASA GRC
MBSE Implementation Status.

[2] Chami, M., Bruel, J.M., (2018) A Survey on MBSE Adoption
Challenges

[3] Di Natale, M., Perillo, D., Chirico, F., Sindico, A., Sangiovanni-
Vincentelli, A., “A Model-based approach for the synthesis of software
to firmware adapters for use with automatically generated components”,
Software and Systems Modeling (SoSyM) Journal 17(1): 11-33 (2018)

[4] Malavenda, C. S., Menichelli, F., & Olivieri, M. “Wireless and Ad
Hoc Sensor Networks: An Industrial Example Using Delay Tolerant,
Low Power Protocols for Security-Critical Applications”, in
Applications in Electronics Pervading Industry, Environment and
Society: 153-162 (2014) Springer International Publishing

Author/Speaker Biographies

David Perillo , PhD. He recently joined TEC-SWF in ESA/ESTEC as
Vitrociset Contractor, with technical responsibility over software and
model-based projects. Before joining ESA he was technical responsible
in ELT for software lifecycle activities of ELINT systems. He was also
in charge to support ELT with its transition toward MBSE with Arcadia.

Claudio Santo Malavenda , PhD, MBA. He covered several roles in
STMicroelectronics, Selex ES (actual Leonardo) and ELT dealing with
Project and Contract management. His works activity deals first series
products management and marketing, Wireless Sensor Network, C4I
systems for fire control in network centric environment and Cyber
Electromagnetic Activities.

Figure 2- EW Mission/Capability example diagram

Figure 3- System Architecture diagram with functional chains

Lessons learned on the use of MBSE in the preliminary design of space systems at CT Paris

Author : Julien Morane (julien.morane@ctingenierie.com), Cedric Dupont

(cedric.dupont@ctingenierie.com)

 Formerly part of Bertin Technologie, the Paris office of the CT Engineering Group has a strong

expertise in innovative space system design and High-performance computing simulation.

During the last year, the group has started to implement the Arcadia method supported by the

Capella tool in several projects. The choice of the Arcadia method was driven by its ‘customer-

friendly’ first steps (Operational Analysis & System Needs Analysis), that allow to check the adequacy

of the prototype system relatively to customer requirements and expectations. Another expected

benefit was the completeness and the consistency of the created system. Eventually, the possibility

to capitalize in the created system for later development phase, and especially for the interaction

with potential supplier, was also a main driver for change.

We developed models for different projects including:

• Our patented space debris mitigation system INSIDeR (an inflatable net aiming to capture

space debris)

• An innovative space braking system for just-in time collision avoidance

• Launcher ground segments

 Although the main concepts were already conceptualized, the use of the Arcadia methodology

in support of the preliminary studies has revealed relevant, particularly to prepare the way

forward for those low-TRL systems.

The modeling of the nominal situations and components has enabled a refinement of the preliminary

requirements thorough the study.

The modeling of non-nominal situations and feared events has enabled to consider new

problematics. For instance, in INSIDeR, a system aiming to close the net and capture the debris has

been designed. The analysis of a feared event ‘creation of new debris’ has conducted to further

studies on the system design to ensure that a single link break in the system will not entail the

separation of any subsystem of the inflatable structure.

The paper will also present how the traditional value analysis methodology and the Arcadia method

are complementary. One may cite among others:

• The management of the feedback loops between customer expectations and real system

behavior is facilitated by the centralization of all the system characteristics.

• The management of the heterogeneity in subsystem conception, both in the liberty

Arcadia method gives to build the models and in the maturity of the different subsystem.

• Automatic and formal verification of the completeness of the work, with the automatic

validation and transitions between Capella layers.

Once created, the model has been (or will be) used for several purposes:

• Description of the dynamic behavior of Insider for communication purpose at various levels.

• Management of interfaces with the satellite in which the system will be embedded.

• Streamlined description of sub-systems to be realized, with their associated requirements,

functions, interface and behavior, allowing the communication with potential suppliers and

used for the development roadmap of the system.

The Arcadia/Capella approach is a complementary method to the classical preliminary design

methodologies. The use of MBSE at the early stage of a project allows to prepare the next

development phases with a common system architecture that can be share by all future stakeholders

of the project.

Joe Gregory1, Lucy Berthoud1, Theo Tryfonas2, Ludovic Faure3

1: Department of Aerospace Engineering

2: Department of Civil Engineering

University of Bristol, Queens Building, University Walk, Bristol BS81TR, UK

3: Airbus Defence and Space, 31 Rue des Cosmonautes, 31400 Toulouse, France

Applying the ‘Spacecraft Early Analysis Model’ to the Biomass Mission

Model-Based Systems Engineering (MBSE) represents a move away from the traditional approach of

Document-Based Systems Engineering (DBSE), and is used to promote consistency, communication,

clarity and maintainability within systems engineering projects. In previous work, industry focus groups

have indicated that one way this can be achieved is by performing early functional validation of

elements of the spacecraft avionics.

This paper presents an extended approach and model template, introduced in a paper previously

published by the authors, to enable early functional definition and analysis of a spacecraft. The approach

uses the ‘Spacecraft Early Analysis Model’ (SEAM), a SysML-based model framework for the

definition, development and analysis of a space-based mission and corresponding space system. In

using this model, the traditional Mission Operations Concept Document is replaced with a model-based

representation of the design that can be executed, interrogated and quantified. The objective of this

model template is to improve the clarity, consistency and quality of the design information, and to

structure this information in such a way as to enable the high-level simulation of the design much earlier

in the system life cycle. This approach focusses on the definition of the concept of operations during

Phase B of the spacecraft system lifecycle.

The SEAM pulls together different, traditionally disparate, analysis tools and enables them to work

together, producing an integrated system model spanning multiple tools. It facilitates the definition and

simulation of the mission using dedicated orbit modelling software System Tool Kit (STK), complex

mathematical analysis using MATLAB, spreadsheet-based data manipulation using Microsoft Excel,

and can be extended to incorporate IBM DOORS for the handling of requirements. At its core, the

SEAM utilises Cameo Systems Modeler (by No Magic).

The structure of the core SysML-based model builds on the principle described by Stephane Estable in

the ‘Federated and Executable Models’ approach – the preservation of separation between the mission

definition and the system definition. The SEAM builds on this by introducing a third distinct layer: the

operational definition. Maintaining separation between these three aspects of the model allows for

greater flexibility of modelling and clarity when looking to analyse, modify or validate the mission,

operations, and system definitions. The SEAM uses a complementary systems engineering

methodology to derive appropriate functional and logical architectures.

The SEAM has been developed iteratively by applying it to case studies taken from real spacecraft

under development by Airbus, refining the capabilities of the template accordingly, and subsequently

generalising the model. The resulting version of the SEAM contains multiple reusable and customisable

MBSE patterns that will ultimately provide users with a comprehensive, consistent and intuitive

SysML-based structure to follow when applying the SEAM to a specific mission.

The case study presented herein focusses on the Biomass mission – an ESA-led, low-Earth orbit, Earth-

observation mission due to be launched in 2022. The primary mission objectives are to determine the

distribution of above-ground biomass in the world forests and to measure annual changes in this stock

over the period of the mission. To achieve these objectives, a P-band (435 MHz) Synthetic Aperture

Radar (SAR) has been selected as the payload. The Biomass space segment consists of a single low-

Earth orbit spacecraft (Biomass) carrying the SAR instrument. The spacecraft will utilise a large

deployable reflector, and this must be deployed during the early phases of the mission. This deployment

process is an example of a critical sequence, characterised by an intricate decision-making process and

subject to a complex relationship between the ground and space segments where communication can

be limited. The MBSE approach adopted enables the definition and analysis of this critical sequence,

pulling together multiple analysis tools to analyse the design of the system and the concept of operations,

generate a deployment sequence timeline, and assess this against the mission needs.

The preliminary results of this work demonstrate that the deployment timeline is heavily influenced by

the orbit chosen (which affects the availability of communication windows). In fact, the spacecraft is

functionally active for only ~20% of the total time required to complete deployment. A significant

amount of time is spent establishing communications windows and making continuation decisions on

the ground. The case study has successfully demonstrated the SEAM’s ability to model critical

sequences and validate this spacecraft functionality and the concept of operations against the mission

needs.

Next steps in the development of the SEAM include its application to a wider variety of case studies

and missions to develop and demonstrate its versatility, and the development of metrics to measure its

perceived value among practitioners. For example, the SEAM has also been applied to ExoMars, a Mars

rover mission due to launch in 2022. Future applications may include constellations and crewed

missions.

This project has received funding from the UK Engineering Physical Sciences Research Council and

Airbus, grant no. 16000151. The authors would like to acknowledge support from Alexandre Cortier,

Stephane Estable, Thomas Fenal, Joanna O’Rourke, Antonio Prezzavento and Alain Rossignol of

Airbus.

1

MBSE APPROACH APPLIED TO LUNAR SURFACE EXPLORATION ELEMENTS

Jasmine Rimani a, Stéphanie Lizy-Destrez b, Jean-Charles Chaudemar c, Nicole Viola a

aDepartment of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy, Email: name.surname@polito.it
bDepartment of Aerospace Vehicles Designs and Control, ISAE-SUPAERO, Toulouse, France, Email: name.surname@isae-supaero.fr

cDepartment of Complex Systems Engineering Department, ISAE-SUPAERO, Toulouse, France, Email: name.surname@isae-supaero.fr

Abstract—The last two decades have shown that among the
new drivers of the design of space systems the level of autonomy
is a key element to ensure the success of a mission. The final aim
is to monitor and direct the operations or counteract unforeseen
events as efficiently as possible, even without the man in the
loop. To effectively accomplish these new tasks, the decision
making layer of the spacecraft should be able to evaluate the
available resources and the overall state of health of the system.
The Model-Based System Engineering (MBSE) framework can
help to understand the general behavior of a complex system
as it is an autonomous space platform. The MBSE scheme
exhibits the links and the interdependency between the different
phases of mission analysis and between the components. The
study proposed in this paper follows the MBSE methodology to
design an autonomous guidance, navigation, and control (GNC)
subsystem of a planetary exploration rover and its collaborative
drone. The study starts from the high-level requirements of a
lunar exploration mission and ends with the preliminary design
of a state-machine, that describes the behavior of an autonomous
GNC. To ensure a high level of autonomy, the decision-making
layer of the GNC takes into account the outputs of the failure
detection, identification, and recovery (FDIR) subsystem and the
overall health state of the rover. The FDIR subsystem embodies
the idea of a multidisciplinary design where different inputs
should be managed to ensure the safety of the overall system
under study. The novelty of this analysis lays in using the MBSE
to define the design box of the autonomous GNC. The logic
behind the MBSE enables the designer to keep track of the effects
of the high-level mission-related decisions and of the FDIR on
the overall behavior of an autonomous GNC subsystem.

In the application presented in this paper, the preferred mean
to study the mission and behavioral analysis is MBSE software
Genesys 7.0 of Vitech Corporation [1]. While the state machine
and the related artificial intelligence algorithms are designed in
Robot Operating System (ROS). The described approach is applied
to the case study of a collaborative rover and drone on the lunar
surface. The mission is designed as a ”precursor mission” to
assess the safety of the lunar lava tubes as possible future human
settlement.

I. INTRODUCTION

In the specific case study presented in this paper, the
reference mission aims to explore the lunar lava tubes. More
in detail, the preferred target is the lava tubes’ skylight locate
in Marius Hills, in the equatorial zone of the Moon. The pit
gives access to a lava tube at fifty meters below the surface
of the Moon, which can be used as future human settlement
[2]. The logic flow starts with the definition of the high-
level requirements for the lava tubes exploration mission as (i)
assure the safety inside the lava tubes, (ii) map the environment
outside and inside the lava tubes, (iii) communicate with Earth.
The rover should accomplish to requirement (iii) with the
help of a relay satellite, while the piggy-back hopping/flying
drone aid to fully accomplish the first and second tasks. The

system context is presented in fig.1. It defines the design box
of the rover. In the ”Moon Environment” box of fig.1 the
qualitative and quantitative impact of radiation, temperature,
and illumination are defined. In the ”Satellite” box the plan-
ning of the available communication windows is inserted and
it defines how long the system is required to be completely
autonomous before contacting Earth. The ”drone” box contains
the components and the functions that permits to augment the
rover exploration capabilities. The ”rover” box is refined by
the definition of its subsystems and their functions. Hence,
the study progresses with the functional analysis and the
identification of the main components for each subsystem of
the rover and the constraints placed by the environment for
each of them. The main subsystems considered for the rover
are: (i) the mobility and GNC system; the structure and mech-
anism; (ii) the passive thermal control system; (iii) the power
system; (iv) the communication system; (v) the command and
data handling system; (vi) the payload that comprehends the
drone and the scientific instrumentation to map the lava tubes
from outside. This logical set-up phase is performed using
the MBSE software Genesys 7.0 of Vitech Corporation, [1].
The Genesys 7.0 helps to describe the mission and the layers
dependency. Actually, each component in the architecture is
associated with a function and at least on state. Moreover
it can be included in an operational mode, or it can cause
a risk. The ”linguistics” links used in the software ease the
comprehension of the system dependencies. At the end of the
study, a preliminary functional architecture of the autonomous
navigation task can be obtained. This functional scheme can be
exported as a Simulink model and it constitutes the skeleton of
a preliminary state machine in Python to study the impact of
the failure propagation of other hazards on the GNC system,
[3], [4]. The state machine is then refined with a python code
exploiting ROS (Robot Operating System), as middleware, and
Gazebo, as the main simulation environment. The use of ROS
enables an easier transition from the simulation to the real
platform testing of the failure, detection, identification, and
recovery algorithms. The methodology supported by Vitech
Genesys 7.0 is called STRATA, an abbreviation of strategic
layers [5]. As suggested by the name, the process is based on
layers that gradually becomes more detailed at each design
iteration [6]. The approach defines a first sizing box starting
from the high-level requirements, constraints and boundaries.
Usually, this first structure is called ”system context”, fig.1.
After delimiting the design environment, the process focuses
on the definition of the expected behaviours: what the system
in the analysis should do and how well. This logical flow
leads to the definition of the subsystems, or components, that
can comply with the expected behavior. At the end of the

2

loop, the overall architecture is verified against the expected
performances and validated against the requirements. The
process is then replicate with an increasing granularity up
until the design team is satisfied with the results. Each new
”layer” starts from the outcomes of the previous one [5]. In
our case, the STRATA methodology is particularly appealing
for its intrinsic characterization of constraints in an early
stage of the design [5]. A good and clear picture of design
boundaries helps understanding which can be the behaviours to
avoid and which are the related risks. Therefore, the STRATA
framework helps to develop the right mindset to analyse the
behaviour of systems in contingency situations. Any change
in the boundaries and constraints affects the complexity of the
system under study and how it interfaces and interacts with
the ”system context”. [6]. Similar study on a fault-tolerant
or reconfigurable GNC have been presented in [4] and [7].
However, the main novelty of this project is the development
of GNC algorithms and design boxes, keeping in the loop
the mission requirements, functions, and operations. The point
of view is that of the integrated health system management,
where a decision at functional level may have a great impact
on the component level.

Fig. 1. Lunar exploration rover interfaces between the environment and other
subsystems in Genesys 7.0 [1] analysis framework.

II. PROJECT OVERVIEW

In the previous section, it was briefly explained how the
rover interacts with the other systems in the mission design
and which tasks it is expected to perform. This section presents

Fig. 2. Interaction between Genesys 7.0, ROS and python language modelling.

the autonomous navigation functions and how they are linked
together. The main two assumptions of the analysis presented
can be summarized as: (i) in between the communication
windows the rover should be completely autonomous; (ii) the
modes of operations consider only the Moon surface operation
and not the launch, traverse, landing and disposal operations.
The surface mission operational modes are derived with the
help of [8] and [9]. In our specific case, the second requirement
of mapping the surroundings of the lava tubes generates the
need for a ”traverse mode”. During this mode most of the
power is dedicated to generating a map, to compute the rover
trajectory and effectively move the rover. Therefore, it was
identified as the most demanding scenario for the GNC. Inside
the ”operations” block, it is possible to define which faults can
affect the system during its traverse on the lunar soil. These
faults can then be associated with a ”risk” or a ”constraint” that
affects the functional level of the analysis of the autonomous
navigation architecture. The traverse related faults have been
identified as goal errors (off-track) and system-related errors
(one of the system parameters is off track) [10] [11]. From
the most common ”faults”, it is possible to understand which
are the important sizing parameters for the GNC: (i) the
power available for the mobility system (that is limited by
the battery’s voltage, current, temperature and charge level);
(ii) the terrain characteristics that impact the wheel slipping
and the wheel sinkage; (iii) the overall weight of the rover;
(iv) the wheels motor available torque; (v) the maximum
traversable obstacle height; (vi) the steering characteristics;
(vii) the goal velocities, (viii) the typical drifting from the
global planned trajectory during ”dead reckoning” navigation.
These characteristics are coupled with the functional analysis
of the autonomous navigation task following the guidelines
of [12] and [13]. The first level functions are affected by the
concerns raised by the goal and the system-related errors. The
identified high level functions are: (i) map generation; (ii)
global path planning; (iii) rover localization; (iv) local path
planning computation; (v) obstacle avoidance; (vi) trajectory
control; (vii) path execution; (viii) resources estimation. In

3

the ”resource estimation” block, the health of the overall
rover, and its effects on the GNC are defined, eg. power
level. The preliminary scheme of high-level functions and
their connections for the traverse mode is presented in fig.3.
The Genesys 7.0 output is used as input for designing the
hierarchical state machine in ROS to study the impact of FDIR
on the GNC. Each first-level function is defined by a series
of tasks. Therefore each block is a state machine per se in
which the output influences the overall autonomous navigation
behavior. The layered approach of STRATA [5] helped to
define the functional interfaces and the physical links needed
to understand the impact of failures and degradation on the
rover during traverse operations. The different levels of detail
aided with the understanding of the overall behaviour without
detailing each component of the GNC subsystem. Actually,
following the flow of requirement-behaviour-component, it
was easier to identify which component needed to be modelled
to simulate nominal and contingency scenarios while studying
operations. The overall simulation framework is based on
python’s language. The components with their state equations
have been defined as classes following the inputs-output flow
defined in Genesys 7.0 through interfaces and links. The
definition in python classes is useful to immediately cross-
check the logical flow with the one defined in Genesys 7.0 and
to easily set up the python nodes that communicate through
ROS toward the real or the simulated rover, fig.2. In the end,
the Genesys 7.0 model output the inputs for the component
design, the algorithms to estimate the best path based on the
resources of the system and the state machine modes and
functions. All those python-based classes are then build up
to constitute a ROS node and interfaced directly to simulation
and test, future work. The python code is then interfaced with
ROS to send command, to simulate the failure or degradation
of various subsystems and see the overall impact on the
operations. These simulations are then used as feedback in
the design to see if the architecture matches the expected
behaviour during contingency situations.

III. CONCLUSIONS

The study presented in this extended abstract follow the
logic of MBSE to design an autonomous GNC system starting
from the mission requirements. Exploiting The Genesys 7.0
software has an internal diagnostic tool to verify that all the
objects, instance in the database are justified, rightly connected
and make sense. as an analysis platform, it is possible to
ensure the traceability and the impact of high-level decisions
on the component and functional levels. The first step is to
give a system context to the rover. Then the operational modes
and the functional analysis at system and subsystem level are
conducted in order to define the expected outputs and the
concerns associated with the autonomous navigation task. The
case study of a mission for the exploration of the lunar lava
tubes is used to explain the logical process. In this analysis,
the ”traverse” operational mode is investigated as well as the
tasks related to the autonomous GNC and the related faults.
Eventually, the output of this analysis is a preliminary layout
of the hierarchical state machine that can be implemented in

ROS and simulated with Gazebo or tested in the robotic lab-
oratory. The MBSE scheme adopted in the project has helped
the understanding of high-level boundaries and constraints
at the very begging of the mission definition. Therefore, it
was useful and crucial to understanding which contingency
situations were interesting to study from an operational point
of view. Moreover, it helped the definition of the inputs and
outputs of each GNC function in the traverse mode and the
related components. It eased the definition of the software
architecture used during the simulations and the analysis of the
operational layer of the rover. The most significant difficulty
lies in the change of point of view: it was difficult to adopt
and understand the logic of STRATA methodology at first.
However, this approach helped understand which components
where vital and which can be doubled in their use to keep on
with the mission even during contingency situations. Overall,
the management of the multidisciplinarity typical of MBSE
has been of great asset in the study. The future work will
focus on the three main branches for both the rover and the
drone: the mission analysis, the study of failures and faults,
and the study of the autonomous GNC. These three ingredients
are highly intertwined together to assess fully autonomous
operations. The aim is the creation of a comprehensive design
framework to study the autonomy of surface robotics systems.
More in detail, the simulation outcomes will be fed back to the
MBSE model to verification that the real performances match
the expected ones. The direction is to continuously iterate
between the early design layer and the output on the behaviour
of the system to derive sizing rules or good practices to define
the autonomy level and better the performances of the system
during contingency operations.

REFERENCES

[1] Vitech Corporation. Genesys: Enhancing systems engineering effective-
ness, 2020.

[2] T. Kaku et al. Detection of intact lava tubes at marius hills on the moon
by selene (kaguya) lunar radar sounder. Geophysical Research Letter,
2017.

[3] Darwish A. Abdelghafar S Hassanien, A.E. Machine learning in
telemetry data mining of space mission: basics, challenging and future
directions. Artificial Intelligence Review, 2019.

[4] Peter Zane Schulte. A state machine architecture for aerospace vehicle
fault protection. PhD Dissertation, Georgia Institute of Technology,
2018.

[5] Zane Scott David Long. A Primer for Model-Based System Engineering.
Vitech Corporation, 2011.

[6] Brian London. A model-based systems engineering framework for
concept development. Master of Science Dissertation, Massachusetts
Institute of Technology, 2012.

[7] Edward Balaban et al. A mobile robot testbed for prognostics-enabled
autonomous decision making. Annual Conference of the Prognostics
and Health Management Society 2011, 2011.

[8] Lancaster R. Clemmet J. Silva, N. Exomars rover vehicle mobility
functional architecture and key design drivers, 2013.

[9] Hélène PASQUIER (Editor). Space Operations: Inspiring Humankind’s
Future. Springer International Publishing, 2010.

[10] Mark Maimone. Challenges for planetary rover navigation.
[11] Stephen B Johnson (Editor). System Health Management: with

Aerospace Applications. Wiley, 2011.
[12] Yang Gao (Editor). Contemporary Planetary Robotics: An Approach

Toward Autonomous Systems. Wiley, 2016.
[13] Alex Ellery. Planetary Rovers. Springer-Verlag Berlin Heidelberg, 2016.

4

Fig. 3. Autonomous GNC high-level functions during the ”traverse” operational mode using Genesys 7.0 [1]. The grey and green boxes are the inputs or
outputs to each behavior, while the yellow boxes comprehends the high-level function. The ”Ref.” at the start and at the end of the logical flow indicates the
starting and the ending of the traverse mode functions.

 1

MBSE-2020 by ESA, Noordwijk , The Nether lands 28 -29 September 2020

Successful MBSE landing on a CNES operational use case

Jonathan LASALLE and Benoit VIAUD
 ARTAL Technologies, 1 rue Ariane, 31520 Ramonville-Saint-Agne, {jonathan.lasalle, benoit.viaud}@artal.fr

Martine JOURET, Anthony JUIN, Fabienne SCHAFFHAUSER and Raymond SOUMAGNE
CNES, 18 avenue Edouard Belin, 31400 Toulouse {martine.jouret, anthony.juin, fabienne.schaffhauser, raymond.soumagne}@cnes.fr

1 Introduction

The Space Variable Objects Monitor (SVOM) is a

space system dedicated to gamma ray detection

and study, under development by China National

Space Administration (CNSA) and the French

Space Agency (CNES), to be launched in 2021.

The system shall be able to trigger alerts of

Gamma Ray Burst (GRB) in real-time with a

maximum of associated data. The space segment

consists in a set of sensors going from large angle

of view for detection to narrow angle of view for

data measurements. Since GRB are very transient

events, it requires the satellite to autonomously

(i.e. without communication with ground) point on

target the different sensors that, each in turn,

provide more accurate position and data. As an

addition to the system scientific and technical

challenges, the organisation of the system

operation by the two agencies introduces some

more complexity.

The design of this system was conducted within

the framework of the CNES engineering process,

based on a set of documents cascading the textual

requirements from the high-level concept of

operations to the technical specification of

equipment. The validation of the obtained

specification mainly relies on human expertise and

on the validation campaign.

The complexity of the system makes it a perfect

candidate for an experimentation of MBSE. This

paper presents the results of a study that has been

led after the design has been already defined but

while the system was still in development and the

topic still fresh in the heads of the architects. The

study tried to assess the benefits that MBSE could

bring in this specific context.

2 MBSE-oriented objectives

Why injecting the MBSE methodology inside an

existing process that proved its efficiency several

times? Three main objectives are often associated

to MBSE:

1) Communicate: to improve the communication

between stakeholders by using a rigorous and

yet reader-friendly language, and thereby

reducing ambiguities.

2) Secure: to assist the system definition

validation by using traceability and coverage

mechanism to ensure consistency,

completeness…

3) Generate: to take advantage of the formal

description of the system to generate

engineering assets (documents, code,

database schema, etc.) or to assist the

specification refinement by automatically

initializing sub-level representations.

The current fully-operational CNES engineering

process can thus be potentially improved, along

these axes, by injecting a pinch of MBSE on it.

Based on this conjecture, two projects took place

successively. The first one was an R&T study,

dedicated to the analysis of the current process and

the evaluation of the potential benefits that MBSE

could bring. Due to promising results, a second

project, based on the models realized during the

first study, was dedicated to the operational

capture of the system validation.

Artal worked in close collaboration with the

CNES in order to provide its MBSE expertise to

the SVOM project and to CNES specialists. The

MBSE activities of these projects were realized

using the Capella tool [2], an open-source

graphical modeller based on the Arcadia Method

[1] (Arcadia is a model-based engineering method

that defines high-level concepts). Capella is

mainly based on four representation layers,

dedicated to the system needs capture

(Operational Analysis (OA) and System Analysis

(SA) layers) and to its associated solution

specification (Logical Architecture (LA) and

Physical Architecture (PA) layers). The different

representation layers are linked together in order

to being able to apply traceability and coverage

mechanisms.

2 Successfu l MBSE landing on a CNES operat ional use case

MBSE-2020 by ESA, Noordwijk , The Nether lands 28 -29 September 2020

3 MBSE-driven interface engineering

The first step consisted in analysing the CNES

engineering process through the in-progress

SVOM case. The main goal was to identify the

capability and the relevance of capturing the

system specification using Capella. In order to

guide the modelling activity, we decided to focus

on the interfaces specification. Indeed, it is a

crucial step in the design of a complex system and

the international collaboration context called for

even more rigor in the definition process.

By analysing the existing specification of the

system, associated to several co-modelling

sessions, we were able to capture in the Capella

model almost all the system description. We

captured the main objectives of the system (using

System Analysis (SA) layer) by specifying its

interactions with external actors. We then obtained

a quite bright view of the public interfaces needs.

Figure 1. Partial System Analysis of the SVOM system

Then, using the Logical Architecture (LA) layer,

we captured the internal system definition by

representing all sub components, their functions,

and their associated exchanges.

Figure 2. Partial Logical Architecture of the SVOM system

In order to address the interface engineering goal,

different strategies were identified. It is possible to

simply add textual description on the exchanges or

on the associated communication ports. It is

particularly relevant in case of subjective

interfaces or if the interface detail is not required

Otherwise, it is possible to refine functional

exchanges by capturing the data structure

associated to them. Then, it offers a clearer and

more complete representation, whose only limits

are those of the modeling language.

Figure 3. Data structure definition

Following the capture of the system itself, we

studied the means to capture the specification of

the simulator of a sub-part of the system. Using

Capella internal tools, a new model, inherited form

the original one, was initialized in order to derive

the architecture specification into its associated

simulator specification while maintaining

traceability links.

Using the analysis of the obtained model and

considering the three MBSE objectives defined in

the section 2, the following conclusions have been

drawn:

1) Considering the communication goal, the

MBSE process gave us, in this context, a

promising communication structure and a

formal specification of the interfaces.

Nevertheless, the SVOM project being in

progress (and the interfaces specifications

being already captured using the historic

CNES process), it was not possible to clearly

evaluate the capital gain.

2) As regards to the secure objective, the

traceability links between the LA and the SA

Capella layers gave us direct evaluation of the

coverage of the capabilities by modelling

items. The capture of interface detail also

provide controls about the completeness of

the specification (an exchange without

associated data structure has to be completed).

3 Successfu l MBSE landing on a CNES operat ional use case

MBSE-2020 by ESA, Noordwijk , The Nether lands 28 -29 September 2020

3) Regarding the generation process, using the

M2Doc tool (that allow the generation of

Word documents including modelling items),

we were able to mainly generate the

traditionally manually filled document, the

non-formal schema of the original document

being replaced by formal Capella diagrams.

Due to the encouraging results of this first project,

a second one, in an operational field, was

dedicated to the capture of the V&V specification.

4 MBSE-driven V&V

Based on the models realized during the first

project, the goal was to specify the V&V

objectives and the corresponding tests sequences

using modelling activities. As references, some

test procedures of other CNES project were

analysed and working session gathering Artal and

the CNES allowed the identification of the V&V

modelling needs. A dedicated Artal Capella

viewpoint (called VVO) was customized to

answer these needs.

First of all, the validation needs must be expressed

by defining Functional Chains (succession of

functional exchanges), each one representing one

behaviour of the system to validate. Then, the

definition of global validation objective (VVO)

allows to groups them. For example, to validate

the communication between two components

(example of VVO), it will be necessary to satisfy

a set of validation needs (e.g. all the possible

connections between these components). In the

context of a VVO, each function chain can then be

derived in order to convert “abstract test

objective” into “concrete test sequence”. This step

allows to specify the executable version (boxed in

Figure 4) of a part of the validation sequence to be

simulated (in purple in Figure 4).

Figure 4. Concretization of the test

Using this data, an embedded tool allows the

generation of a test sequence that can be annotated

in order to specify the interactions steps and the

success criteria to be manipulated by the test

operator. Each step or criteria can embeds

configuration parameter that will be valued during

the test sequence instantiation.

Figure 5. Annotated concrete test sequence

Using this toolchain, it was possible to capture all

required validation data, the evidence being that

all the required V&V specification document were

fully generated from the model. Indeed, all along

this collaboration, the MBSE has gained ground

gradually. Initially, it was experimented in parallel

of the classical process, in order to prove its worth.

Then we planned to gather the two “ways of

working” by generating, from the model, the

document usually manually filled. The proof

having been provided, progressively, the CNES

engineers relied on the model and used it as data

reference to conceive the V&V data, which were

then integrated in the model. Finally the writing of

the operationally used V&V specification

document was fully delegated to the implemented

tools.

The SVOM experts, MBSE and Capella

inexperienced people, received this new process

positively and were unanimous regarding the

benefits of such approach. The operational gain

was notable thanks to the strong stakeholders’

involvement in this project and the real

consideration of the model as the specification

reference.

5 Going further

Around this main flow, several “on-the-edge”

points were considered. First of all, we confronted

the model and the 579 textual requirements in

order to evaluate their overlap. Less than half of

them can be strongly linked to the model (either

fully covered by it or completing it, by adding

performance constraints for example), the others

4 Successfu l MBSE landing on a CNES operat ional use case

MBSE-2020 by ESA, Noordwijk , The Nether lands 28 -29 September 2020

being either too technical or, on the contrary, too

abstract. An independent and autonomous

requirement engineering process remains then

needed and cannot be fully integrated to this

described MBSE process.

Another point consists in the managing of

specification version. In the original CNES

process, the produced documents themselves

embed their version and the change tracking report

(manually filled). To transpose such capability in

the MBSE world requires to being able to support

such feature:

- The versioning of each stage of the model by

saving the model stable copies.

- Storing the description of the changes

associated to a new model version in order to

facilitate impact analysis and to carry out

reviews on a limited scope.

- Tracking the author and the modification dates.

The usage of some tools and connectors

gravitating around the Capella platform (Github,

Jira, Mylyn…) associated to the suitable method

seems to be a satisfying answer.

Finally, in order to ensure a complete data

continuity along the development process, it

would be necessary to link the experimented

modelling phase with the following steps namely

the system building including software

implementation. Concerning such goal, only a

small incursion concerning the link with the

satellite database was achieved. Starting from the

Capella model, we well generated a skeleton of it

(which has to be filled manually). Based on the

“Mapping” API, this demonstrator supports

iterative processes, in other words : allowing to

progressively update the database content

according to the successive version of the Capella

model, while allowing manual database edition in

parallel. A specific interface being dedicated to

conflict resolution.

6 Conclusion

The smooth incursion of MBSE in CNES

engineering process was undeniably well

received. The SVOM experts were converted to

this new way of working. Even if their

professional schedule were fully charged, they did

not hesitate to invest time to completely follow

this experience until the end. The building of an

operational model-based toolchain to capture the

VV specification is an achievement which opens

the door to a wider reach of MBSE within CNES.

The data continuity is a powerful help in order to

track inconsistence and to compute impact.

The three identified MBSE pillar seems to enter

into resonance with the CNES needs:

- The communication between engineers will be

lightened while remaining rigorous.

- The specification process will be secured

thanks to the generalization of data continuity

including a strong link between the validation

specification and the system under test

specification itself.

- All required documents will be automatically

generated from the model, avoiding time waste

in the heavy task of writing document.

Capella perfectly answered the CNES needs in this

context and could be easily incorporated in a larger

engineering framework to cope with transversal

engineering concerns that rapidly arise.

Acknowledgement to SVOM project

including CNES and SECM

References

[1] VOIRIN, Jean-Luc. Model-based System and

Architecture Engineering with the Arcadia

Method. Elsevier, 2017.

[2] ROQUES, Pascal. Systems Architecture

Modelling with the Arcadia Method: A

Practical Guide to Capella. Elsevier, 2017.

 1

Model Based Space Systems and Software Engineering Workshop

-MBSE 2020

Title: International Cooperation on Model Based Development

For Spaceflight Assurance: The TACS Test Case

Authors: Isabelle Conway, Silvana Radu, ESA

Lui Wang, John W. Evans, NASA

Naoki Ishihama, JAXA

Michel Izygon, Tietronix

Arthur Witulski, Vanderbilt University

Martin S. Feather, Jet Propulsion Laboratory, California Institute of Technology

Abstract:

As this workshop attests, Model Based Systems Engineering (MBSE) is moving to the forefront of
spacecraft development. The benefits of SysML® as language for the elucidation of the system
architecture is well understood and is being demonstrated across programs, such as the NASA Europa
Clipper currently in Phase C of the life cycle [1]. Concurrently, the benefits of the evolving development
of MBSE for assurance have been recognized and are emerging as Model Based Mission Assurance
(MBMA), which promises the development of integral assurance stakeholder views into the model as
well as the production of useful products from the model [2,3]. In this regard, the assurance
organizations of NASA, ESA and JAXA have setup the MBMA Task Force within the established trilateral
Safety Mission Assurance (SMA) working group to explore jointly the potential benefits of MBSE and
MBMA in anticipation of future joint projects in which an architecture for a flight mission will be shared
in a SysML model. This paper presents the goal and content of this cooperation and reports upon
current results.

The cooperative project goal is to develop a model based mission assurance reference model suitable
for representing faults and failures and allow automatic generation of Reliability Availability
Maintainability and Safety (RAMS) analyses. To ground this effort, the project is using a CubeSat as a
target system. Figure 1 represents this CubeSat, dubbed the Trilateral Assurance CubeSat (TACS). The
base model for the project was derived from the INCOSE CubeSat standard model built in Magic Draw
for demonstration purposes. The project model was derived at Johnson Space Center as the lead
organization, with ESA and JAXA as international partners in the design. The preliminary TACS model
has been shared among our agencies in order to ensure a common set of requirements, system
architecture, functions, and failure modes. Specifically, the Trilateral MBMA Task Force has adopted the
ESA ECSS Parts Failure modes Catalog (Annex G - ECSS-Q-ST-30-02C) and generic failures identified in

 2

CubeSats for assigning faults to the system
components. The Trilateral Task Force reviewed and
refined the model and approach, and came up with
an initial mission assurance meta-model.

It has long been recognized that useful system
products are forthcoming from SysML. The emphasis
in this project is on the generation of fault
management and reliability artifacts. These include
Failure Modes and Effects Analysis (FMEA) and Fault
Trees (FTA) based on early mission design, using TACS
as an example. Leveraging on a consistent SysML
model developed by the system design team using a
NASA SysML Profile, the MBMA modeling framework
extends the nominal system models and behaviors by
adding failure modes and effects using a combination
of SysML state machine and activity diagrams
representations.

In this approach, state machine diagrams represent the possible transitions between nominal and faulty
states of the system’s components, together with the effects those faults have upon the components’
functions. Figure 2 illustrates interactions among state machines that capture the transitions between
the nominal <ON> state to off-nominal <Failed> states using a combination of Signals, Activity and
Guard Conditions.

Figure 2, Electrical Power System (EPS)-Solar Cells State Machine & Activity Diagrams of failure due to Radiation

After enhancing the nominal system model with the failure information, FMECAs and FTAs can be
generated automatically from the enhanced SysML model. Figure 3 illustrates the FMECA and FTA
outputs and different failure effects can be interactively selected from a system component hierarchy
and displayed in a graphical user interface within the MagicDraw® application.

Figure 1, TACS CubeSat - adapted from ESTCube-1.

 3

 Figure 3, TACS EPS FMECA & FTA Output

This modeling approach has been demonstrated by NASA on projects such as NASA Cascade Distiller
System [4] and has been the basis for some efforts on the NASA Europa Clipper [5].

The plan for this effort is to present the recommendation of a meta-model for the representation of
faults and failures at the Trilateral Safety and Mission Assurance Conference (TRISMAC) in June 2021 in
Tokyo and to work towards standardization of the framework across agencies.

References

1. T. Bayer et al., "Europa Clipper Mission: Preliminary Design Report," 2019 IEEE Aerospace
Conference, Big Sky, MT, USA, 2019, pp. 1-24, doi: 10.1109/AERO.2019.8741777.

2. J. Evans, S. Cornford and M. S. Feather, "Model based mission assurance: NASA's assurance
future," 2016 Annual Reliability and Maintainability Symposium (RAMS), Tucson, AZ, 2016, pp. 1-
7, doi: 10.1109/RAMS.2016.7448047.

3. M. Izygon, H. Wagner, S. Okon, L. Wang, M. Sargusingh and J. Evans, "Facilitating R&M in
spaceflight systems with MBSE," 2016 Annual Reliability and Maintainability Symposium (RAMS),
Tucson, AZ, 2016, pp. 1-6, doi: 10.1109/RAMS.2016.7448031.

4. M.J. Sargusingh, M.R. Callahan, S. Okon, “Cascade Distillation System Design for Safety and
Mission Assurance,” 45th Int. Conf. on Environmental Systems, Bellevue, Washington, 2015.

5. Castet, J.F., Bareh, M., Nunes, J., Okon, S., Garner, L., Chacko, E. and Izygon, M., 2018, March.
Failure analysis and products in a model-based environment. In 2018 IEEE Aerospace
Conference (pp. 1-13). IEEE.

Acknowledgements: this research was carried out at ESA, NASA, JAXA, Tietronix, Vanderbilt University,
and the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National
Aeronautics and Space Administration.

Experiences and Expectations with

Model Based System and Software Engineering

Andreas Wortmann, Martin Beet, Dirk Roßkamp

OHB System AG, Bremen, Germany

<Firstname>.<Lastname>@ohb.de

A brief position paper summarizing obstacles and requirements on the application and introduction of

model-based engineering from the perspective of and with an emphasis on (space segment) software

engineering.

Projects for a long time have engaged ideas of model-based engineering in various flavors in order to

optimize quality and efficiency of development. In general, there activities have been carried out in

isolated applications not sharing data, structure and processes. At ADCSS 2016 some examples have

been presented. They range from flight software development with Rhapsody in C, simulator software

based on SMP, SMP2 and ECSS-SMP, hardware/software codesign for specific functions to

requirements engineering and systems engineering with SysML.

Common misconceptions and obstacles

While MBSE is around for quite some time there are still quite some misconceptions present. From a

language point of view most prominent is the term 'model' itself. With respect to MBS(S)E a model is

not a simulator and a model does not refer to a spacecraft model like the EM, PFM or FM. Secondly,

MBSE commonly is mistakenly put on a level with using UML or SysML. Many new terms with unclear

or overlapping semantics have been introduced, including: digital clone, digital twin, digitalization,

digital continuity and many more. Their use sometimes seems rather arbitrary.

The introduction of MBSE methods is a significant change in the way engineers interact and think their

projects. It's a long-term process, but there is an implicit expectation that the Return of Invest is quickly

achievable in short term. Furthermore, it's blinded to think that everything will be better, more

efficient and cheaper, but we don't have to change our way of thinking and invest in related

development processes. The assumption that all elements (e.g. software source code, configuration

tables) with heritage can be continued to be used without modification in general is not true. Different

tools and infrastructure call for different artifacts. On the other side, it's a misconception that replacing

artifacts like software code with models inadvertently lead to loss of heritage and previous knowledge.

In fact, the opposite is true: If correctly realized the prior knowledge and good design pattern are

rigorously applied to all functional code (functions with pre-existing code and new functions) and the

heritage is in reuse of implementation concepts and pattern rather than in source code. This is possible

by raising the level of abstraction when actually implementing. With the SAVOIR/OSRA ESA is doing

exactly this for harmonizing onboard software architecture.

Ongoing activities

At ESA a plurality of activities are carried out striving towards model centric engineering, including the

MB4SE and OSMoSE initiatives as well as the various SAVOIR groups and the EGS-CC. At OHB such

activities are supported and the internal organization and workflows are aligned. Preceding activities

are identified and connect whenever possible in terms of processes and data flow. Various tools and

approaches are assessed, including UML based modelling and domain specific languages, and serve a

step-wise improvement of established processes and tools.

Essential Requirements

From the experience made so far, some basic requirements against an envisioned model-based

engineering environment and platform can be drawn. These are presented in the following.

Todays' systems are large in terms of size and complexity and they are expected to grow even more in

future. The engineering platform required must be capable to handle such large systems and keep up

with it expected future growth.

Collaboration is essential in large engineering projects. A multitude of different engineering disciplines

are working together on a shared model. Two needs arise that at a first glance seem contradicting: On

the one hand an engineer requires a stable baseline to base his work on as continuous changes

introduced by colleagues while working will stifle progress. On the other hand, an engineer always

requires the latest information in order to not design the wrong system. In software engineering

transaction-based collaboration tools like git have been introduced and solve these challenges very

successfully. In cooperative systems engineering environments such tools will be beneficial as well. In

addition to pure transaction based revisioning systems it must be possible (for instance in a concurrent

engineering session) to collectively edit a model in a google docs style, where one actually can observe

the colleague's cursor.

The tools user interface (UI) is important for acceptance and efficient operation. Overwhelming

complexity with 1000-button menus for doing simple jobs are not suitable and error prone. The UI

should be scalable with the use case and customized to the engineering task. While the user expects

rigorous failure and consistency checks as well as simple analyses to be carried out interactively the

tooling must remain live even with very large model being handled. A system that fades for 30 seconds

while editing or that requires a "make" button to trigger long-lasting activities that put the engineer

on hold will not be accepted in the long term. This specifically holds for models that represent

executable systems and test cases.

It's important to model more domain specific aspects of a system than what is achievable when using

UML/SysML as these are general purpose languages. While they can be extended via profiles etc.

respective models are not very intuitive to read. Multiple paradigms and multiple notations will be

required to optimize meta-models and languages for their application in their respective domain. This

ranges prose-style (high level requirements) declarative (type system), behavioral (test, math

expression) and structural (deployment) languages with textual (requirements), tabular (lookup),

graphical (state machine, deployment) or symbolic (math, chemistry) notations.

Outlook

So, how could such an engineering framework look like? Tools including MS Excel and Word that

currently are used for connecting artifacts from different engineering disciplines can easily be

substituted by a model-based environment. But from the pure amount of highly specialized tools, it

seems obvious that there will not be the one "BIG NEW TOOL" that will do everything. Established

tools need to collaborate and share a common model. The focus should be on a shared model that can

either be directly maintained or that external tools interface with, rather than on an exchange of

models among external tool. Such integration calls for a data repository/hub that provides the

mentioned collaboration features and it requires the specialized tools to provide interfaces that allow

transaction-based or continuous exchange of data.

Due to the specifics of space engineering and peculiarities of the various stakeholder, it is not expected

that a suitable out-of-the-box tool will ever be on the market. However, in a collective effort agencies

and industry should be able to establish a customizable framework meeting the requirements.

MBSE-2020 workshop abstract submission

Abstract : “Experience Report: History and State of the Practice of Model-

Based Software Engineering in Thales Alenia Space in France”
Authors: Régis De Ferluc, Marco Panunzio

Thales Alenia Space in France

Introduction

Model-Based Software engineering methods and tools have been used in Thales Alenia Space

in France for more than a decade, benefiting from active and efficient R&D efforts, including

collaboration with space agencies, and accompanied by a pragmatic and incremental

deployment. In this paper, we summarize the major steps of adoption of MBSE: 1) emergence

of modeling; 2) consolidation and maturity; 3) link to other disciplines beyond SW development;

4) application to payload software development.

We highlight the main factors that have made the adoption possible. We describe the current

state of the practice of Model-Based Software Engineering in Thales Alenia Space in France,

and provide some insights about challenges ahead in the next future.

Emergence of modeling for on-board software

In the late 90’s and early 2000s structured design methods were already adopted in the space

domain to address challenges of hard real-time software development (HRT-HOOD1 was

finalised in 1994). The biggest merit of those methodology was to stimulate the emergence of

an initial software reference architecture within the company, which would permit to support the

development of real-time embedded software, while supporting domain-specific aspects (i.e.,

first adoption of PUS, specificities of the avionics). At the same time however, there was a large

space for improvement in the design support of these methods.

1 HRT-HOOD: A Structured Design Method for Hard Real-Time Ada Systems - de A. Burns, A. Wellings

The first emergence of satisfactory use of software modeling for on-board software has its origin

in self-funded R&D activities in collaboration with Thales Group, which led to the definition of a

model-based engineering environment for satellite platform software: Melody CCM.

Melody CCM was originally devised so as to target OMG’s CORBA Component Model, yet it

evolved and adapted to support space-specific considerations: support for PUS in the design

space, support for precise data type modeling (mirroring the expressiveness of the Ada

programming language), and use of a target run-time adapted for embedded space software.

The software design environment was extended so as to support code generation for Ada , and

targeting TAS’ own reference architecture. The work capitalized on early advances in software

modeling, such as those of the EU FP6 ASSERT research project, with ESA as project

coordinator, or attempts to use UML as modeling language; yet the result was a decisive step

forward, in particular thanks to the domain-specific nature of the modeling space, and the

generated code, which was factorizing reference code patterns already in use.

The engineering environment (known as “CCM for Space”) was operationally deployed for the

first time in 2009 for the development of the Sentinel 3 platform software.

Consolidation and maturity

In the years 2012-2016, every new platform software was developed using more and more

advanced evolutions of the MBSE methodology and toolset (Exomars TGO and EDM, Iridium

Next, Spacebus NEO, and Earth Observation satellites, including SWOT). Evolution of the

toolset was driven by two main factors: i) to quickly respond to specific program needs

(adaptations and performance optimizations); (ii) to extend the capabilities of the toolset with

additional capabilities.

Factor i) led to the decision of maintaining full control within the on-board software department

of the development of the toolset, as only a dedicated team with knowledge both of modeling

and toolset development and of the target software architecture could support this goal, and

with the necessary reactivity.

Factor ii) was possible thanks to a synergy of self-funded R&D and participation to several R&D

activities funded by ESA and CNES. Among all the topics, those that demonstrated good

potential and results in prototypal developments were progressively added to the operational

toolsuite (e.g. generation of export files to the Satellite Data Base; auto-coding of configuration /

missionisation software based on the content of the Satellite Data Base; generation of TM-TC

ICD; MMU support in the modeling tool; Model-Based Test Campaign specification; Model-

Based testing of OBSW missionization. Some other features were considered promising, but

have not found (yet) a path towards operational deployment: support for Time and Space

Partitioning; Model-based Schedulability analysis; Model-based test behavior specification).

Link to other disciplines beyond on-board development

The growth of the Software Factory within the software area (on both development and test

sides) was resulting from a pragmatic and local improvement of engineering practices. At the

same time, model-based techniques were adopted in related disciplines such as the Satellite

Data Base (SDB-Next), the Operations Preparation Environment (SCOPE), the AOCS team (full

GNC modeling with Matlab-Simulink), or Data Handling Teams (FDIR Design and Avionics Unit

Specification in Capella). This new ecosystem has brought new opportunities (System to

Software transition for equipment management SW, full auto-coding of GNC software,

harmonization of test and operation environments, or digital continuity from design models to

Satellite Data Base), but also raises new challenges considering the strong heritage of practices

in the company. Just as a few examples: need to set-up co-engineering practices, need to align

tools and technology, need to coordinate configuration management, …).

In this context, the Software Factory cannot been seen anymore as an independent asset, but

needs to be considered together with many other external assets with in the so-called concept of

“Model-Based System-Software Factory”. This interesting step in the evolution of the Model-

Based adoption in TAS in France required a paradigm change in terms of organization and

governance. Instead of local optimization, the Model-Based System-Software Factory seeks for

global optimization throughout the whole process, where more effort is needed in the early

stages of the V cycle in order to save significant amounts of time and money on the latter ones.

It is particularly true when dealing with topics such as Electronic Data Sheets, Early Validation

and Verification analysis, or System to Simulation transitions.

Application to Payload Software development

Model-Based practices have taken more and more importance for the development of avionics

/ platform on-board software. A recent trend foresees partial or full application of the same

methods also for payload software. Payload software complexity has greatly increased in the

past years, thanks also to the trend of moving function implementation from costly and often be-

spoke ASIC implementations, to FPGAs, or SW executing on a general purpose space

processors. Unfortunately, this ramp-up was not sustained by the formalism that comes with

model-based practices, and the lowest reliability expectations associated to (part of) payload

software have not permitted to justify early adoption of similar practices. However, it appears

nowadays that Payload Software development can benefit substantially from the existing Model-

Based System-Software factory, in particular for parts related to (Payload) Command and Data

Handling, real-time behavior, communication protocols and resource management, i.e., aspects

in common with platform software. In turn this requires adaptation to this new context (possibly

different programming languages or software execution platforms, different underlying

hardware, different performance/ predictability / reliability needs, …).

Initial deployments in this context were performed for the Payload Execution Platform of the

MTG FCI and IRS payloads, and a sizeable telecom payload.

Challenges for the near future

As a continuation of the trend highlighted in previous sections, model-based software

engineering requires to be used in context that show three new trends:

- A systematic search for a solution to the “digital continuity” challenge, i.e., the capability

of meaningfully model a full system from the early design phases (i.e., 0, A/B1), and to

transition modeling data in the design and implementation phases (B2, C, D) and later

into operations, without loss of data, and maintaining flexibility of adjusting the

abstraction of representation to the level meaningful to the actual phase of development

- The reconciliation of heterogeneity internal to the project, which derives from

approaches, methodologies and technologies best suited for individual disciplines (i.e.,

AOCS, thermal, structures, avionics / SW), which should now be able to fit together,

breaking existing walls in the free, meaningful circulation of data between and beyond

disciplines, throughout the whole development lifecycle

- The reconciliation of heterogeneity brought by the collaboration of several company (or

several Agencies) within the same project, which may hinder effective communication

and engineering work.

Recent work on methods and concepts such as Model-Based System Engineering, Ontologies,

Engineering PDMs, Digital Twins, all reflect the desire of the engineering community to

overcome those challenges.

These challenges will be all present in the Gateway project, a multi-agency endeavor lead by

NASA, with contributions of ESA, JAXA and CSA for the development of the future human base

in orbit around the moon. Thales Alenia Space in France is one of the partners selected for the

realization of the Gateway I-HAB module. We will report on how we plan to deploy modeling

approaches in such context, in particular for the areas of software and avionics, and what

adaptations to our practices we foresee in this new development context.

Model Based Space System and Software Engineering, MBSE 2020, 28-29 September 2020, ESTEC

1

Lessons learned from the use of SysML in Space Systems at SENER Aeroespacial

L. Tarabini-Castellani, V. Gómez, J. Fombellida, S. Ramirez, N. Puente, R. Contreras, R. Haya

Sener Aeroespacial S.A., C. Severo Ochoa 4, 28760, Tres Cantos (Spain)

EXTENDED ABSTRACT

The practical application of the SysML language in engineering processes of stablished organizations is a relevant

feedback to steer the evolution and consolidation of the associated methods and tools. SENER started using SysML

for Space Systems in 2014. The first project to use SysML was the ESA Proba-3 formation flying demonstration

mission. SysML methodology was used for the system design of the ground segment and operations. Since then the

number of SENER projects adopting this technique has grown, bringing to a cross fertilization and to the internal

standardization of the SysML modeling approach (Figure 1). This paper deals with the evolution of the SysML use

in SENER describing for representative projects, covering from full flight systems and subsystems to equipment,

the reasons to implement this standard, the benefit achieved and the main lessons learned from its adoption.

Figure 1: SENER SysML adoption timeline

Proba-3 is a complex ESA formation flying demonstration mission. In 2014, at the beginning of phase C, SENER

as prime contractor was in charge to define the ground segment and operations approach. The challenge was to

adapt the Redu ground station and the Proba1&2 operations environment to the demanding and highly autonomous

Proba-3 formation flying operations. A Mission Operation Concept Document (MOCD) was required in a very

short time frame since these activities were not included in the previous phase for budgetary reasons. Thanks to

SysML diagram sharing and agile design methodology, ground segment use cases were prepared in a very reduced

time. Flight autonomy versus Ground autonomy versus manual operation discussion was possible by the use of

SysML activity diagrams. Final consensus was reached in due time resulting in a solid MOCD that is still currently

used. This case of success showed the critical importance of using unambiguous semantics understandable by

system engineers, software engineers and operations engineers [1]. SysML was also used at component level in

Proba-3 for defining unit requirements from the use cases. At system level SysML was used to model the complex

mode architecture including spacecraft modes, Formation Flying modes and the GNC modes at spacecraft level.

This logical model allowed to simulate and verify the logic correctness and the mode transitions. SysML was also

used to compile and maintain Proba-3 power budget. This budget was particularly complex due to the large number

of units and operating modes. Additionally, the SysML simulation feature was used for the independent design

verification of the Failure Identification and Recovery (FDIR) system (Figure 2). The main lesson learned from

Proba-3 is that SysML models are of great help in the system design. SysML should be adopted in the initial phase

of the project and the model evolved during its development [2].

Model Based Space System and Software Engineering, MBSE 2020, 28-29 September 2020, ESTEC

2

Figure 2: Proba-3 MOCD (left) & System Budgets (right)

Space Rider is the space program managed by ESA for the development of a reusable robotic spacecraft. In 2017,

during phase A/B1, Space Rider was under Thales Alenia Space and CIRA co-primeship and SENER was

responsible for the GNC including the requirements definition. Adopting SysML methodology, SENER defined

GNC use cases starting from the mission requirement. For each use case a dedicated activity diagram led to identify

the critical requirements. In a second step, the GNC system was designed ad-hoc to satisfy the requirements [3].

Moreover, the high degree of autonomy, scenarios and phases for the GNC of Space Rider called for a systematic

approach to move from the high level mission requirements to the allocation of functions at component level,

which motivated the adoption of SysML at GNC subsystem level. In 2018 Space Rider mission and system was

substantially updated. The modified VEGA AVUM was selected as external orbital module and SENER, that

designed an integrated GNC system suitable for the orbit and re-entry phase should adapt the GNC exclusively for

the Re-Entry Module. Thanks to the SysML digital design, the change was absorbed with limited impact. SysML

orbital GNC modules were removed and GNC re-entry module were reused and improved in order to obtain the

detailed operations definition. Despite the complex consortium organization and the split of the GNC development

responsibility by phase, using SysML, SENER managed to provide and maintain a consistent implementation of

the Re-Entry GNC functions interfaces (Figure 3). The clear interface design was of paramount importance to

identify additional requirements and analysis to be performed [4]. Again, SysML handled the system complexity

and demonstrated high flexibility to adapt the design.

Figure 3: Space Rider GNC requirement definition (left) and GNC function architecture (right)

The Helicon Plasma Thruster (HPT) is a radio frequency-powered plasma propulsion technology that can

perform well while eliminating many issues that have affected Electric Propulsion Systems (EPSs) to date. SENER

started the development of the HPT in 2013 in collaboration with the University Carlos III of Madrid, based on

internal funding and ESA’s GSTP support programmes. Since then, several prototypes have been built to increase

the technology TRL. In 2020, SENER is leading a consortium to evolve the HPT system to TRL 6 in the frame of

an EU-funded project called HIPATIA. In order to optimize the project efficiency and to speed up the design loop

review, in 2019 SENER started to implement and maintain the complete system design of the HPT (Figure 4). In

this model based oriented project, all the project reviews are performed directly on model’s views reducing to the

barely minimum the technical documentation. At the same time external reviewer have continuous full access to

the detailed design [5].

Model Based Space System and Software Engineering, MBSE 2020, 28-29 September 2020, ESTEC

3

Figure 4: HPT SysML model

E.T.PACK is an EU funded project aimed to design a deorbit kit device based on electrodynamic tether and

develop a prototype up to TRL4 by 2022. The project will follow the successful HPT SysML implementation

scheme taking full advantages of the lessons learned and building on it (Figure 5). In this project SysML design

will mimic the prototype to build a digital twin. The objective is to reduce to the minimum the cost of the

technology development that will hopefully end in a demonstration flight in 2025 [6].

Figure 5: ETPACK system design with SysML

The Madrid Flight on Chip (MFOC) is a project funded by Comunidad de Madrid and the European Union to

develop an execution platform based on MultiProcessor System on Chip (MPSoC) for future new space

applications and satellites [7]. MFOC started in 2018 and includes work packages dedicated to the advanced use of

MBSE and in particular to SysML, integrated in a complete engineering design environment. Within this activity,

SENER is with The Reuse Company to maximize the exploitation of the SysML tool and its connectivity to other

system design tools. Currently, this project is actively supporting SysML standardization activity in SENER.

Within MFOC, SysML formal modeling has been adopted at the System Specification phase of a hardware-

software co-design and co-verification approach. This approach has been implemented to better exploit trade-offs

between firmware and software partitioning and to design architectures conforming functional and stringent

performance requirements with a shorter design cycle (Figure 6).

Model Based Space System and Software Engineering, MBSE 2020, 28-29 September 2020, ESTEC

4

Figure 6: MFOC project aiming at integrating SysML with the complete electronic development environment

In the frame of the ESA Open Space Innovation Platform (OSIP), SENER proposed an idea for designing ESA

AOCS/GNC with SysML. If selected, the activity goal would be to digitalize the AOCS/GNC design process.

With SysML the final user would be capable to easily follow and operate the subsystem by the originated diagrams

avoiding the need of very detailed documentation and hard-to-follow texts. The final outputs would be a set of

guidelines for a SysML based AOCS/GNC Design, the definition of the relations amongst the different model

elements, diagrams and views, the generation of templates and a roadmap for the reuse of AOCS/GNC data [8].

As conclusions, SysML is considered a mature methodology in SENER and is widely used for internal

developments, proposals, ESA and EC projects. SENER is also teaching SysML for Space at the University Carlos

III of Madrid. SysML allows mastering the complexity with a reduced number of graphical elements and associated

documentation. The standardized SENER working procedure guides the engineer in the early task of requirement

definition up to the level of definition of the component detailed design. The increase in the engineer’s productivity

results has demonstrated to lead to higher project efficiency with consequent saving of money. SysML is well

accepted by customers and brings to considerable optimization of the work. The key for methodology acceptance is

that different projects have adopted SysML at different levels according to their needs and expectations,

concurrence with the rest of stakeholders, communication and training as well as a definition of the scope within

already stablished engineering processes

References

[1] L. Tarabini Castellani, S. Llorente, J.M. Fernandez, A. Agenjo, A. Mestreau-Garreau, A. Cropp, A. Santovincenzo. Proba-

3 - Achieving Formation Flying Millimeter Accuracy. 9th International ESA Conference on Guidance, Navigation &

Control Systems, Porto (Portugal). 06/2014

[2] S. Ramirez. Suitability Assessment of a MBSE Procedure for Modelling, Analysing and Validating a Spacecraft

within Systems Engineering Applications, ETSIAE UPM, Madrid. 09/2017

[3] L. Tarabini Castellani, R. Haya, A. Ayuso, Space Rider Thruster Configuration and Control Strategy Optimisation.

10th International ESA Conference on Guidance, Navigation & Control Systems, Salzburg (Austria). 05/2017

[4] R. Haya, L. Tarabini Castellani, A. Ayuso. Re-Entry GNC Concept For A Reusable Orbital Platform (Space Rider).

69th International Astronautical Congress, Bremen, Germany. 10/2018

[5] J. Navarro-Cavallé, M. Wijnen, P. Fajardo, E. Ahedo, V. Gómez, A. Giménez, M. Ruiz, Development and

Characterization of the Helicon Plasma Thruster Prototype HPT05M. 36th International Electric Propulsion Conference,

Vienna, Austria. 09/2019.

[6] L. Tarabini Castellani, A. Ortega, A. Gimenez, E. Urgoiti, G. Sánchez-Arriaga, G. Borderes-Motta, E. C. Lorenzini, M.

Tajmar, K. Wätzig, A. Post, J.F. Plaza, Low Work-Function Tether Deorbit Kit. 1st International Orbit Debris Conference

(IOC), Houston (Texas). 12/2019

[8] Madrid Flight On Chip (https://flightonchip.es/)

[7] Open Space Innovation Platform. (https://ideas.esa.int/)

https://ideas.esa.int/
https://ideas.esa.int/

Abstract for MBSE2020 Workshop

Title: “What to Expect from SysML Version 2?”

Author(s): Hans Peter de Koning (hanspeter.dekoning@dekonsult.com)

Affiliation: DEKonsult, Amsterdam, The Netherlands (retired from ESA per 31 Dec 2019)

In the ongoing adoption of Model-Based Systems Engineering (MBSE) the Systems Modeling Language
(SysML) standard from the Object Management Group (OMG) plays a major role, as it is de facto the only
global standard for MBSE. Since SysML version 1.0 was released in 2008 and has increasingly been deployed
in industry and government agencies across many industry sectors to support the development of complex
systems. In addition in 2017 it was adopted as the ISO/IEC 19514 standard. SysML is also used in the
European space sector, e.g. on the ESA projects e-Deorbit, Euclid, PLATO and Mars Sample Return.

In the last 10 years the standard has seen a number of gradual upgrades from version 1.2 in 2010 – that
marked the start of real industrial use – to the current version 1.6 release in November 2019 [1]. SysML
version 1 is strongly based on Unified Modeling Language (UML) v2, and therefore inherits a number of
concepts and standardization patterns from this object-oriented software engineering standard. This can be
considered both a strength and a weakness. A strength because it meant that mature UML tools could be
adapted with reasonable investment to support SysML, and provided good coverage for software-intensive
systems. However, a weakness too, because the software engineering heritage created barriers for the
uptake by systems engineers without a strong software engineering background. A general complaint on
SysML v1 is that the learning curve is too steep, and that the language unnecessarily complicates modelling a
number of key systems engineering concepts, such as interface connections between nested components.

This was also acknowledged at OMG and in 2015 work was started on collecting user needs and
requirements for a RFP (Request for Proposal) for SysML version 2. The goal was to ensure that all lessons
learned from the initial years of industrial usage would be taken into account. Since such a major overhaul of
the standard can only be afforded every now and then, this preparation was taken very seriously and
performed by a working group with broad representation by end-users from different industry sectors (large
and small enterprises, government agencies, research institutes, academia) as well as SysML tool vendors
over the course of 2 years. It resulted in two extensive RFPs: one for the SysML v2 language itself [2], and
another one for the Application Programming Interface (API) and Services [3]. All discussions and
prototyping that went into the preparation can be found at [4].

Since the beginning of 2018, a team of more than 100 experts from around 60 organisations -- the so-called
SysML v2 Submission Team (SST) -- has been developing the second version of SysML. This work is
culminating into the first full public release – for both the language and the API and Services – planned for
September 2020.

The current presentation will provide an overview of the new and enhanced capabilities of SysML version 2,
including but not limited to:

1. New simplified SysML meta-model, which is founded on a minimal set of key concepts.
2. The new normative and informative model libraries including the upgraded way of handling

quantities, units and scales, which now have a very rigorous underlying information model, that also
allows for automated unit / scale conversion, which is important when integrating models coming
from different partners. Also basic geometric modelling is supported to represent e.g. the
specification of enveloping shapes for system components.

3. The new textual notation, including a standardized and very powerful expression and constraint
language, as well as the upgraded graphical notation (diagrams), and the integral, flexible viewpoint

mailto:hanspeter.dekoning@dekonsult.com

/ view capabilities. These overcome many limitations of the SysML v1 Block Definition Diagrams and
Internal Block Diagram, and provide much better and more precise ways to define interfaces and
connections, also in deeply nested structures. Then there is the integrated approach to model
behaviour (activities, functional architecture, time-based sequences, finite state machines, 4D
lifecycle objects), both in precise textual notation and in diagrams that can be mixed and matched,
to answer the needs of particular domains.

4. Support for variant modelling and product line engineering built into the language and/or
connectable to external variant modelling tools.

5. The much improved support for integrating SysML v2 models with external analysis and simulation
paradigms and tools, founded on much more precise execution semantics.

6. The prototype implementations of the textual and graphical language, on the Eclipse Modeling
Framework as well as in Jupyter Notebooks.

7. The new API and Services that provide a much better and richer capability to interact with SysML
models than SysML v1 XMI files. The technology neutral API specification allows for both static
whole model transfers and simultaneous dynamic interaction of many client tools with one or more
SysML repositories. In the current SST prototype implementation, a REST, an OSLC, and a Java API
are supported.

8. The way compatibility with SysML v1 is ensured via a SysML v2 profile as well as via the new API.

The presentation will highlight how the learning curve is expected to be reduced for systems engineers. Time
will be dedicated to explain the new so-called usage-focused modelling approach, which allows to directly
model deeply nested architectures, in a way that feels more natural for most systems engineers. This new
capability is in addition to the SysML v1 “definition/type first” approach, and still maintaining ways to ensure
a rigorous modular architectures. The same definition / usage and composition patterns are consistently
applied throughout all aspects of the language, for requirements, structure, behaviour, interfaces,
parametrics, constraints, verification.

Finally an outlook on the deployment schedule of SysML v2 will be provided.

The author has been a member of the SysML v1 task forces since 2009 as well as the SysML v2 RFP working
group, and is an active member of the Submission Team for SysML v2.

References

[1] Systems Modeling Language v1.6, OMG, November 2019, https://www.omg.org/spec/SysML/1.6/

[2] Systems Modeling Language (SysML®) v2 Request For Proposal (RFP), OMG, December 2017,
https://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2

[3] Systems Modeling Language (SysML®) v2 API and Services Request For Proposal (RFP), OMG, June 2018,
https://www.omg.org/cgi-bin/doc.cgi?ad/2018-6-3

[4] OMG SysML v2 RFP Working Group Wiki at http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-
roadmap:sysml_assessment_and_roadmap_working_group

[5] Hans Peter de Koning, “Progress on SysML v2”, 13th ESA Workshop on Avionics, Data, Control and Software
Systems (ADCSS2019), November 2019, ESA/ESTEC,
https://indico.esa.int/event/323/contributions/5057/attachments/3756/5215/11.55_-_Progress_on_SysML_v2.pdf

[6] General information on the OMG Systems Modeling Language (SysML), see http://www.omgsysml.org

[7] General information on MBSE across all industry sectors, INCOSE/OMG MBSE Wiki at
http://www.omgwiki.org/MBSE/doku.php

https://www.omg.org/spec/SysML/1.6/
https://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2
https://www.omg.org/cgi-bin/doc.cgi?ad/2018-6-3
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-roadmap:sysml_assessment_and_roadmap_working_group
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-roadmap:sysml_assessment_and_roadmap_working_group
https://indico.esa.int/event/323/contributions/5057/attachments/3756/5215/11.55_-_Progress_on_SysML_v2.pdf
http://www.omgsysml.org/
http://www.omgwiki.org/MBSE/doku.php

MODEL-BASED SYSTEMS ENGINEERING IN SPACE ROBOTICS: THE ADE

EXPERIENCE

J. Ocón (1), I. Dragomir (1), R. Jalvo(1), R. Marc (2), M. Foughali (3), L. Kunze (4), R. Dominguez (5)

(1) GMV Aerospace and Defence, Isaac Newton 11, PTM, Tres Cantos, 28760, Spain, Email: jocon@gmv.com
(2) Airbus Defence and Space Ltd., Gunnels Wood Road, Stevenage, SG1 2AS, UK, Email: gnc.uk @airbus.com

(3) Verimag, Univ. Grenoble Alpes 700, 38401 St. Martin d’Hères Email: mohammed.foughali@univ-grenoble-alpes.fr
(4) Oxford Robotics Institute, Dept. of Eng. Science, Univ. of Oxford, Oxford OX1 3PJUK, Email: lars@robots.ox.ac.uk

(5) DFKI GmbH, Robert-Hooke-Straße 5 28359 Bremen, Germany Email: raul.dominguez@dfki.de

ABSTRACT

Model-based systems engineering (MBSE) is the adopted practice for taming the increased complexity and

heterogeneity of today’s (systems-of-) systems under development. System modelling allows one to obtain

abstract representations of the system by focusing only on the crucial aspects needed at the different

development stages. These aspects can tackle for instance the design of the components performed

independently by different engineering teams, the integrative design of the system in terms of communications,

and the system design subject to formal verification and validation. Integrated in a model-driven development

process, such as the waterfall model, and supported by many tools, MBSE provides a complete solution that

aims to derive, possibly (semi-)automatically, implementations from high-level specifications. MBSE offers

many benefits during the development phases: modularity and independent development of the different

systems/components, reuse of components, compatibility with other systems/framework, and formally

checked reliability and resilience.

In this paper, we present the MBSE formalisms, approach, and tools used in the H2020 Autonomous decision

making in very long traverses (ADE) project (https://www.h2020-ade.eu/). The aim of the ADE project is to

develop a demonstrator for a planetary rover capable of performing very long traverses (kilometres per sol),

taking autonomously decisions required to progress, reducing risks, and seizing opportunities for data

collection (opportunistic science). The rover will be able to perform high-level goals requested from ground,

decompose these high-level goals into low-level activities, and perform these activities in real-time, while

reacting to any hazardous situations and adapting the activities to the current conditions.

More specifically, the ADE design of the demonstrator involves the use of many models and technologies in

order to achieve such crucial goals, some of them being beyond the state-of-the-art in space robotics. For

autonomous decision taking, the ADE system integrates an on-board planner based on artificial intelligence

(AI) techniques. This component uses the Problem Domain Definition Language (PDDL) for modelling the

world and computational logic for reasoning and finding solutions. For opportunistic science, ADE integrates

a scientific detector also based on state-of-the-art AI. This component uses trained neural network models that

detect and classify scientific targets of interest. For long traverses, ADE integrates a rover guidance supported

by a perception and localisation system that allows for autonomous path planning and hazard avoidance.

Additionally, ADE uses a robotic arm for sample caching. These components use and implement control

models to provide the basic functionalities of the robotic platform. For reacting to hazardous situations, ADE

integrates fault detection, isolation, and recovery (FDIR) based on formal methods. This component uses

Behavior, Interaction, and Priority (BIP) to formally model the system and check its correctness, at both at

runtime and offline.

Finally, for the real-time execution of all these functionalities as well as creating the integrative design, ADE

uses the TASTE tool. TASTE is an open source framework developed by ESA that enables the development

of embedded, real-time systems based on MBSE. A TASTE system design is produced with standardized

modelling languages (e.g., ASN.1 and AADL) describing different views of the system including views for

mailto:jocon@gmv.com
mailto:robert.marc@airbus.com
mailto:lars@robots.ox.ac.uk

data types, components, as well as for the deployment. The tool-chain generates code for the target deployment

platform (while enforcing real-time properties) and produces the system executable(s), among other features.

ADE develops other components, integrated in the considered demonstration scenario. A Ground Control

Station enables the control of the system in different autonomy modes, as well as bookkeeping the results of

the operations for further assessment. The navigation system is supported and checked by ground truth. Other

offline assessments include the traversability of the terrain (soil), the simulation of the mission(s) and the

replay of the operations performed by the robotic platform. Soil traversability is based on neural network

models trained with data logged prior by the robotic platform. The simulation includes a model of the robotic

platform in terms of kinematics, controlled by the ADE developed system. The aim is to evaluate and correct

the functionalities of the demonstrator before field trials. The replay mode adds the assessment of the system

performances from real logged data.

This paper will describe the models, approach, and tools used in ADE for the development of the planetary

rover. We will present both the challenges encountered during the development, mainly related to the

integration of many formalisms into a common design, and the approaches taken to address them. Finally, we

will report on the experience of using different technologies and tools as well as the lessons learned

ACKNOWLEDGMENTS

We would like to thank the European Commission and the members of the PERASPERA programme support

activity (ESA as coordinator, ASI, CDTI, CNES, DLR, and UKSA) for their support and guidance in the ADE

activity. We also thank the ADE Consortium for their collaboration and support in this activity.

This project has received funding from the European Union’s Horizon 2020 Research and Innovation

programme under Grant Agreement No 821988.

Capella to TASTE MBSE bridge
Project Team:

Presenter: Michał Kurowski
N7 Space Sp. z o.o.

mkurowski@n7space.com

Other project
contributors:

Arkadiusz Wójcik
was with Creotech Instruments S.A.

arkadiusz.wojcik@creotech.pl

Michał Kocon
N7 Space Sp. z o.o.

michal.kocon@n7space.com

Daniel Kaczmara
Creotech Instruments S.A.

daniel.kaczmara@creotech.pl

 Bartłomiej Juszczyk
Creotech Instruments S.A.

bartłomiej.juszczyk@creotech.pl

Michał Mosdorf
N7 Space Sp. z o.o.

mmosdorf@n7space.com

ESA team: Hans Peter de Koning
ESA (retired)

Maxime Perrotin ESA
Maxime.Perrotin@esa.int

Short Abstract: The presented project provides a bridge between Capella, an open-source MBSE tool

supporting the Arcadia method, and TASTE, ESA’s open-source MBSE toolchain. The bridge is implemented

via a Capella plugin, which translates the Capella’s data and physical architecture models into TASTE-

compatible ASN.1 and AADL models, which can be further enhanced with behaviour definitions through C,

Ada or SDL, and compiled into deployable binaries. The bridge was validated by implementing software for

a Mass-and-Thermal Mockup running on STM32 MCU.

Keywords: Capella, TASTE, Arcadia, ASN.1, AADL, SDL, MSC, MBSE, STM32, plugin

Background. Capella [1], originally implemented by Thales, is an Eclipse-based tool implementing the

Arcadia method [2], allowing to perform operational need analysis, system analysis, logical architecture

design, physical architecture design and finally define a product breakdown structure, providing an

alternative to UML and SysML. It allows to capture requirements and other project specific metadata,

delivering a high-level cross-domain MBSE solution. While it does not provide any code generation

capabilities by itself, it is highly extensible through Java plugins. TASTE [3], managed by ESA, is a set of tools

focused on supporting model-based software development. In particular, it allows to generate code from

ASN.1, AADL and SDL models, which can be then compiled and deployed onto the supported platforms,

including x86, Leon3 and ARM STM32. The resulting software can be then tested using executable (via

Python) MSC diagrams. A bridge connecting the two solutions, in the form of a Capella plugin, was

implemented during the MBSE_Implement project founded by the European Space Agency and carried out

by Creotech Instruments (prime contractor) and N7 Space (subcontractor). It allows to apply an MBSE based

approach throughout the entire software product lifecycle, from high-level cross-domain analysis to

implementation, testing and deployment.

Bridge implementation. After discussions held between Creotech Instruments, N7 Space and ESA, N7 Space

analysed the scope and explicitness of Capella model elements with respect to the capabilities and

requirements of TASTE toolchain. The following was considered – data model, architecture and behaviour.

Capella’s data model focuses on the data semantics. TASTE on the other hand models both the semantics,

via ASN.1, and encoding, down to the bit-level, via additional ACN definitions or by application of default

UPER rules. While Capella’s data model could be enhanced with additional metadata for bit-level encoding

specification, therefore enabling ACN generation, it was considered complicated and unnecessary. N7

Space implemented ASN.1 generation, by mapping Capella’s Packages, Classes, Unions, Collections,

Numeric Types into ASN.1 Modules, Sequences, Choices, Sequences Of and Integers or Reals respectively.

The user can additionally choose, through custom properties, an encoding specification from between

UPER, platform native or ACN. In case of UPER and platform native, encoding is handled automatically by

TASTE. In case of ACN, the additional rules must be provided by the user separately. Capella’s data model

supports data types, values and expressions. On the other hand, ASN.1 supports only data types and values.

In order to partially resolve this limitation, a simple evaluator was implemented in the plugin to translate

integer expressions into concrete values. As Capella’s Units, relevant to Physical Quantities, do not have a

mailto:mkurowski@n7space.com
mailto:michal.kocon@n7space.com
mailto:bartłomiej.juszczyk@creotech.pl
mailto:Maxime.Perrotin@esa.int

corresponding construct in ASN.1, they were implemented via ASN.1 type name postfixes. Similarly,

Capella’s class inheritance hierarchy is translated into a set of ASN.1 Choices.

Capella’s architecture model is expressed via logical and physical architectures. The former is usually

considered a “principle”, coarse-grained, general architecture. The latter is the finalized architecture. As

TASTE requires a concrete architecture definition, and the tracing between the physical architecture and

the logical architecture is maintained in Capella anyway, the physical architecture was chosen as the base

for AADL generation. N7 Space implemented a mapping from Capella’s physical Nodes,

Components/Actors, Links/Paths, Ports, Functions and Functional Exchanges into TASTE Nodes, Partitions,

Buses, Devices, Functions and Interfaces respectively. The TASTE concepts are expressed via standard AADL

constructs such as Packages, Systems, Processes, Subcomponents, Connections, Features and

Subprograms. As time-and-space partitioning is not supported in the plugin, all components residing on a

single node are merged into a single partition. An extensible and explicit mapping to target processors and

drivers is provided through custom string properties. The developed mapping allows the generation of

TASTE Interface and Deployment Views.

While Capella supports the modelling of behaviours through Sequence, as well as Mode and State diagrams,

N7 Space deemed their translation into SDL (or any other executable language) infeasible without

significantly extending the Capella’s model. Consequently, the concrete behaviour definition is to be

performed directly in TASTE, e.g. via SDL, C or Ada. Unambiguous, formal and user-friendly software

behaviour definition within Capella can be a subject for future work.

The plugin implemented by N7 Space first checks the Capella model for consistency and completeness from

TASTE’s perspective (thus constraining the Capella’s model to a subset with well-defined semantics),

provides feedback, allows the user to select data or architecture models’ subsets and then generates the

corresponding ASN.1 and AADL artefacts. The plugin allows to naturally follow the Arcadia method

(implemented in Capella) with TASTE based implementation within a fully model based workflow. A partial

approach is also possible by using only the generated ASN.1 [4].

Validation. In order to validate the plugin and the MBSE approach, a use case scenario was established

jointly by Creotech and N7 Space. Creotech modelled a Mass-and-Thermal Mockup software in Capella. The

model was then iteratively refined using feedback from N7 Space, illustrating the benefits of model-based

design formalization and disambiguation for achieving common understanding across different industrial

partners. After the finalization, the model was automatically translated into ASN.1 and AADL files using the

plugin. N7 Space implemented the software behaviour in SDL (high-level functionality), C (peripheral

drivers) and Ada (RS-485 communication device driver). The C code was based on an alternative, twin

software, manually coded by Creotech Instruments. The software was then successfully deployed and

tested on a physical Mass-and-Thermal Mockup designed and produced by Creotech for an in-house

developed satellite platform. The test scenarios, defined by Creotech, were implemented by N7 Space in

Python using the code automatically generated from MSC diagrams created in TASTE. Additionally, as a part

of the applied MBSE approach, Creotech Instruments used a freely available M2Doc [5] add-on to generate

documentation from an internally developed Capella model.

Summary. The developed plugin allows to translate a well-defined subset of Capella’s data and physical

architecture models into ASN.1 and AADL models compatible with TASTE. These models can be then further

enhanced with behaviour definition via SDL, C or Ada, and compiled into executable software for target

platforms. The plugin and the MBSE approach were successfully validated via the implementation of

software for a Mass-and-Thermal Mockup. Feedback from the validation was propagated as suggestions or

remarks to the TASTE project.

References:
[1] Capella, https://www.eclipse.org/capella/

[2] Model-based System and Architecture Engineering with the Arcadia Method, Jean-Luc Voirin, ISBN 978-1-78548-169-7

[3] TASTE, https://taste.tools/

[4] Maxime Perrotin et al.. TASTE in action. 8th European Congress on Embedded Real Time Software and Systems (ERTS 2016)

[5] M2Doc Capella add-on https://www.m2doc.org/

https://www.eclipse.org/capella/
https://taste.tools/

Model Based Space System and Software Engineering – MBSE 2020

1

CoRA-SAGE: The lessons learnt from AOCS/GNC algorithms deployment in TASTE

A. Figueroa1, J.M. del Cura1, S. Lozano1, G. del Valle1, G. Rodríguez1, J. Corchero1, J. Cardín1,
L. Tarabini Castellani1, E. Rodríguez1, D. Oddenino2

1 SENER Aeroespacial, Flight Systems Division, Calle Severo Ochoa, 4, 28760 Tres Cantos, Madrid, Spain

2 ESA/ESTEC – GNC, AOCS & Pointing Division, 1 Keplerlaan 2201AZ, Noordwijk, Netherlands

Abstract

Compact Reconfigurable Avionics (CoRA) is a co-engineering activity involving AOCS&GNC, software
engineering and on-board data handling whose aim is to prototype an in-flight reconfigurable avionics
system. In this context, SAGE (CoRA-SAGE) is a multidisciplinary activity aimed to implement AOCS&GNC
functional chains with a large suite of space sensors and actuators in parallel with the Model Based Avionics
Design (MBAD) activity and the Reconfigurable Data Handling Core (RDHC) activity. CoRA-SAGE has been
responsible of developing the AOCS/GNC exercised in the reconfigurable avionics and the ground support
equipment, including simulated units and a piece of flight hardware used to test the overall CoRA system.

CoRA-SAGE selected Space Rider reusable servicing vehicle as strawman test configuration. Space Rider is
a unique ESA mission with several application scenarios including Earth Observation, telecommunication,
science and demonstration missions. Space Rider orbital and re-entry phases requirements allows to stress
the need to fit very different AOCS/GNC modes in the on board computer. From the full set of the Space
Rider mission, SENER has included in CoRA-SAGE the Fine Pointing Mode (FPM), Safe Mode (SM) and Re-
Entry Mode (REM), which are representative of the AOCS/GNC modes present in any space mission. CoRA-
SAGE EGSE provides the electrical interfaces to the AOCS components, combined with the simulation of
the spacecraft environment and behaviour in order to verify the functionality of the AOCS/GNC and the
stimulation of the hardware unit selected, an AURIGA star tracker which is operative in one of the orbital
modes. CoRA-SAGE EGSE provides a mixture of simulation and sensor stimulation capabilities, including:

 Simulation of AOCS components for flight software verification and to support incremental
integration, i.e., simulation of absent components

 Simulation of spacecraft environment and dynamics for open and closed loop testing of AOCS
algorithms

 Characteristics that cannot be provided by the real devices, such as simulation of erroneous
behaviour due to device failure or degradation

 Integrated external developed models as part of the simulation environment

 Real sensors (e.g. star tracker, etc.) so that they can generate representative data for the test
scenarios used for AOCS verification

 Interfaces of the spacecraft on-board buses

 Interfaces of stimulated AOCS components (sun acquisition sensor, gnss, imu, flush air data system,
reaction wheels, reaction control system)

 Optical ground support equipment of the star tracker HW unit

The architecture of the CoRA-SAGE system is depicted in Figure 1.

Figure 1: CoRA-SAGE Architecture

Model Based Space System and Software Engineering – MBSE 2020

2

The design of the selected AOCS/GNC modes is modular and allows to reconfigure the AOCS/GNC functions
partitioning between hardware and software implementations, hence allowing the implementation of the
same algorithm both in FPGA or in the processor and following a Model Based approach. The design and
performance assessment were conduct in Matlab/Simulink while the verification and deployment have
been done via TASTE. The use of these tools, and specially TASTE, have facilitated the interaction with
the other CoRA teams to specify and implement the AOCS/GNC software/hardware in the Data Handling
Core. From CoRA-SAGE point view, TASTE served to capture the AOCS/GNC modes architecture in the same
environment in which the algorithms were finally deployed with the rest of the CoRA system and to
centralize the interfaces of the AOCS/GNC modes and sub-functions. Within the CoRA-SAGE team, TASTE
allowed the creation of a constantly updated and exchangeable database for the variable names, variable
length and data type easing the communications between of the AOCS/GNC and software teams. Moreover,
this approach has been paramount to verify the AOCS/GNC deployment.

CoRA-SAGE team decided to verify the AOCS/GNC modes incrementally. First, in the Functional Engineering
Simulator (FES), the transformation of the algorithms to use fixed-point representation was done.
Secondly, Open Loop tests were designed and executed directly in TASTE (with an internally available
emulated GR740 processor), prior to the Closed Loop tests conducted with the CoRA-SAGE EGSE and the
COTS-Bread Board (preliminary BB procured by RDHC to test CoRA-SAGE before having available all CoRA
elements) and the whole CoRA system acceptance tests. The open loop tests verification in TASTE paved
the way to deploy successfully the AOCS/GNC modes both on the COTS-BB and on the Elegant-BB (definitive
BB designed for CoRA). Indeed, no flaw due to the AOCS/GNC modes functioning was detected during the
overall system verification conducted after the verification of AOCS/GNC modes through open loop tests
via TASTE. The TASTE features for early verification and testing of the generated software (GUIs and
Python scripts) were employed to verify the deployment. The objective was not testing again the full
functionality, previously verified in a dedicated Matlab/Simulink Functional Engineering Simulator, but a
subset of representative cases selected in order to validate the successful migration of the algorithms to
the target platform.

AOCS/GNC modes code were generated automatically from Simulink, uploaded in TASTE and run in an open
loop simulated environment with the inputs generated in the FES. For this, the inputs/outputs definitions
automatically generated by TASTE were loaded in Simulink, according to the interface database defined
within TASTE. Finally, the GUI application available in TASTE allowed iterating with the algorithms via
Python external scripts feeding the AOCS/GNC modes with input reference data and verifying the
integration. A sketch of the verification process is shown in figure 2.

Figure 2: Verification process of CoRA-SAGE AOCS/GNC implementation

This process facilitated to achieve the consistency between AOCS/GNC algorithms and implemented
software, the generation of code and the partitioning of the AOCS/GNC into elementary functions to fit
the FPGA capacities. Moreover, it served to verify the AOCS/GNC algorithms deployment in the early phases
of the project.

Model-based techniques for space microcontroller applications
Steve Duncan, Thales Alenia Space UK Ltd

Mixed-signal microcontrollers have become dominant in terrestrial electronics applications because
of their low cost, high integration and rapid development cycle. The recent advent of rad-hard and
rad-tolerant devices with onboard analogue interfacing has started a similar revolution in the space
domain, with potential reductions in component count, board space, power consumption, harness
mass and, above all, cost.

Typical microcontroller application programs are simple, deterministic and repetitive, which makes
them simple to analyse and relatively straightforward to develop. However, they are often deployed
as part of a larger distributed system, in which case a substantial proportion of the behavioural
complexity arises from the interaction between the nodes rather than the nodes themselves. This is
especially true for bus-based command and control protocols, particularly where the
communications medium is not perfectly reliable and there is a possibility that messages between
nodes may be lost or corrupted.

The management of emergent complexity is an important part of distributed system design.
Experience has shown that despite high test coverage, it is still possible for systems to contain latent
faults that cause an unrecoverable state when confronted with rare but unfortunate events, for
example the permutation of the address field in a message to an incorrect but legal value. A very
desirable goal would be the ability to prove formally that the system is free from such defects, i.e. it
will always recover itself to a known state following any sort of upset.

Conventionally, the dynamic interactions between nodes in a system are designed using Message
Sequence Charts. These diagrams are good for capturing stationary sequences (the “happy path”)
but tend to become unmanageable when branching due to nondeterministic decisions or message
errors is included.

SDL, as used in ESA’s TASTE toolchain, is a formal language for specifying and modelling the
behaviour of systems. It was developed by an ITU working group in the 1970s and was widely used
in the design of call control schemes for circuit-switched landline and mobile telephony. SDL
represents a distributed system as a collection of interacting finite state machines (FSMs). It has a
graphical from that lends itself readily to visual design capture and analysis, and a textual form that
can be compiled into an executable. Both representations are equivalent and each may be readily
transformed into the other.

SDL encourages the development of predictable systems by allowing key simplifying constraints on
the programming model to be enforced:

• Execution occurs only during state transitions
• The execution path through any state transition is acyclic.
• An FSM may only affect another through tightly constrained points of interaction.

In this presentation, we will describe the results of our research into the model-based specification,
design and validation of microcontroller-based subsystems using the TASTE toolset. We cover the
following topics:

Behavioural Design

The decomposition of the system into SDL Finite State Machines is described.

Data Modelling

The modelling of data structures in ASN.1 is described, and the application of the data model in the
generation of secondary representations (e.g. object dictionary, Electronic Datasheets, spacecraft
database) is discussed. Particular attention is paid to the separation of system and protocol
software from application, leading to a configurable model that can be easily reused for new
applications and targets.

Model Validation

The construction of an executable simulation model is described, including the modelling of
abstracted system components related to the interacting elements (e.g. data buses, application
software). Validation of the system within this model is discussed. Specifically, the use of scripting
and other automated techniques to explore and/or enumerate the state space of the system.

Code Generation

The automatic generation of code for heterogeneous systems of 32-bit and 16-bit processors is
described, together with the necessary procedures for ensuring correct encoding from ASN.1
representations to legacy packet structures. We then show how it is possible to generate memory-
efficient data encodings that are compatible with the small program memory spaces generally
available on microcontrollers.

Subsystem Integration

The incremental integration of a system is demonstrated, whereby the TASTE model is replaced, one
component at a time, with real subsystems, in order to validate the implementation against the
model. The possibility for the TASTE tool to become the basis of the EGSE is discussed.

Case Studies

Finally, we present the results of three breadboard projects developed using the MBSE approach
with TASTE:

• A CANbus Backplane with heterogeneous nodes based on the Thales Alenia Space DPC
microcontroller and the Cobham Gaisler GR712,

• A distributed thermal control System based on the Cobham Gaisler GR716,
• A microcontroller-based Rate Gyro using the Microchip SAMV71.

Tiny Runtime to Run Model-Based Software on CubeSats

Rafał Babski Michał Kurowski Konrad Grochowski Maxime Perrotin

N7 Space Sp. z o. o N7 Space Sp. z o. o N7 Space Sp. z o. o ESA
rbabski@n7space.com mkurowski@n7space.com kgrochowski@n7space.com Maxime.Perrotin@esa.int

Short abstract: The presented project extends TASTE, ESA’s open-source model-based software

development toolchain, with support for MSP430, a family of cheap low-power space-grade MCUs

used in small satellites. The goal is achieved via establishing a mapping between FreeRTOS and TASTE

constructs, implementing code generation via templates, optimizing/replacing the existing

middleware and integrating an Ada compiler for the target platform. The results are validated by

implementing in TASTE a demonstration software for a mock CubeSat, based on a MSP430 kit.

Keywords: TASTE, MSP430, MBSE, FreeRTOS, Kazoo, CubeSat, ASN1SCC, Capella

Background. ESA’s TASTE [1] MBSE toolchain uses AADL, ASN.1, SDL and MSC languages to describe

a system’s architecture, data model, behaviour and test cases respectively [2]. AADL, SDL and MSC,

while stored textually, can be manipulated via graphical tools. ASN.1 code can be edited using an

IDE [3] or generated from a model created in Capella. The models can be used for documentation

generation, static analyses, testing and generation of deployable binaries. The latter requires TASTE

support for the given platform – code generation templates, middleware, compilers, etc. At the

beginning of the project, only several 32- and 64-bit targets were supported, such as RTEMS Leon 3

and Linux x86. MSP430 is a family of cheap, ultra-low-power, mixed-signal microcontrollers, which

includes space-grade radiation hardened parts (e.g. MSP430FR5969 rated for 50krad, with non-

volatile FRRAM). The above traits make them good candidates for deployment in small satellites.

Features distinguishing MSP430 from the existing TASTE targets are 16-bit architecture and very small

amount of memory (2kB SRAM and 64kB FRAM for MSP430FR5969). N7 Space is an active TASTE

Steering Committee member, bringing experience from perspectives of both user (deployment of

ASN.1 models in PROBA3 payload for TC/TM transcoding) and contributor (ASN1SCC improvements

and asn1scc.IDE development, PUS C ASN.1 generator and Capella-to-TASTE plugin).

Extending TASTE with MSP430 support. Before the recent introduction of the Kazoo tool, the TASTE

method to generate code from AADL models relied heavily on the hardcoded use of Ocarina [2]. Kazoo

is a new tool in TASTE toolchain and it implements a new approach to generate code: it uses a

templating engine to generate code, build scripts, derived models, and other artefacts giving much

more flexibility to the end user, including the possibility to create backends to support new platforms.

The code generated by Ocarina uses PolyORB-HI/Ada or PolyORB-HI/C as a platform independent

middleware which provides constructs required by TASTE. One of the disadvantages of PolyORB is

huge memory requirements, which makes impossible to use it on small platform like MSP430.

The newly implemented support for MSP430 in TASTE is based on FreeRTOS real-time operating

system for microcontrollers [4]. All constructs required by TASTE were implemented using FreeRTOS

features. This approach allows to reuse templates created in this project for other platforms (including

tiny ones) which are currently supported by FreeRTOS or could be easily added in the future. Even the

MSP430 support itself required adding a new port, which proved to be a reasonably simple process.

For entities modelled in SDL (Specification and Description Language) TASTE toolchain uses

OpenGEODE [2] to generate Ada source code. While creating TASTE model of a realistic CubeSat test

application targeting MSP430, the support for Ada language was not yet ready for the platform,

therefore, OpenGEODE's feature to generate C source code was refreshed and improved.

mailto:rbabski@n7space.com
mailto:mkurowski@n7space.com
mailto:kgrochowski@n7space.com

One of the big challenges after abandoning PolyORB in the generated code was to provide

compatibility for communication with the code which still uses old middleware. To solve this issue

new compatible device drivers were created: one for MSP430 and one for PolyORB. These drivers

utilize a new simplified protocol to exchange messages.

After establishing generic code patterns required for mapping models into FreeRTOS objects, the tools

forming the TASTE toolchain required some improvements and fixes:

• capabilities of Kazoo were extended to allow generation of code for all TASTE constructs;

• the ASN1SCC tool was extended with support to generate code for 16-bit platforms;

• OpenGEODE C code generation issues regarding case-sensitivity were fixed and support for

cases where more than one function is modelled in SDL was added.

The documentation of all the tools and the aforementioned process is available on TASTE wiki [2].

TASTE, while AADL, ASN.1 and SDL based, supports also several other implementation languages such

as C and Ada. Additionally, SDL is integrated into the final binary via intermediate transformation to C

or Ada code. The existing freely available Ada compilers either do not support MSP430 or are

considered legacy software. In order to provide a seamless open-source support for Ada user-routines

and SDL-to-Ada generation, an Ada compiler was assembled. AdaCore’s GNAT LLVM [5] is used to

translate Ada into LLVM bytecode, which is then translated by LLVM [6] into MSP430 assembly, finally

compiled by Texas Instruments GCC [7]. The entire process is wrapped via a Python script serving as a

frontend.

Validation. In order to validate the developed target support, a mock CubeSat-class satellite was

designed in Capella [7], demonstrating basic power supply monitoring, thermal management, mode

management and simple payload handling. This model was then manually translated into TASTE

interface and deployment views, as well as SDL diagrams. PUS-C compliant-by-construction TC/TM

data model was prepared in PUS-C Population Tool [8] and automatically transformed into ASN.1.

Low-level hardware handling was implemented using C. The resulting binaries were deployed and

tested on a flatsat build around the MSP430FR5969 LaunchPad Evaluation Kit.

Summary. TASTE is now extended with support for MSP430FR5969 MCU, enabling an MBSE-based

approach in small/low-cost satellites, such as CubeSats. The performed work validates the benefits of

the Kazoo template-based approach and can be a starting point for supporting other MCUs, as well as

reducing the memory footprint on the existing targets.

References
[1] TASTE - A tool-chain targeting heterogeneous embedded systems, using a model-based development

approach (https://taste.tools/)

[2] TASTE Wiki (https://taste.tuxfamily.org/wiki/)

[3] asn1scc.IDE - Qt Creator plugin for asn1scc - ASN.1/ACN compiler for embedded systems

(https://n7space.github.io/asn1scc.IDE/)

[4] FreeRTOS - Real-time operating system for microcontrollers (https://www.freertos.org/)

[5] GNAT LLVM (https://github.com/AdaCore/gnat-llvm)

[6] The LLVM Compiler Infrastructure (https://llvm.org/)

[7] GCC - Open Source Compiler for MSP Microcontrollers

(http://www.ti.com/tool/MSP430-GCC-OPENSOURCE)

[8] Capella (https://www.eclipse.org/capella/)

[9] Deployment of the PUS-C Standard in Projects supported by an Automatic Generation Toolset (PUS-Gen)

Maxime Perrotin, Serge Valera, Michal Kurowski, Arnaud Bourdoux - ADCSS 2018

https://taste.tools/
https://taste.tuxfamily.org/wiki/
https://n7space.github.io/asn1scc.IDE/
https://www.freertos.org/
https://github.com/AdaCore/gnat-llvm
https://llvm.org/
http://www.ti.com/tool/MSP430-GCC-OPENSOURCE
https://www.eclipse.org/capella/

SHARED DATA TYPES FOR OSRA AND TASTE

- MBSE 2020 -

28-29 September 2020

Noordwijk, Netherlands

Jan Sommer

(1)
, Andreas Gerndt

(1)
, Daniel Lüdtke

(1)
,

(1)

DLR (German Aerospace Center), Institute for Software Technology

Lilienthalplatz 7, 38108 Braunschweig, Germany

Email: jan.sommer@dlr.de

Email: andreas.gerndt@dlr.de

Email: daniel.luedtke@dlr.de

ABSTRACT

Demand for more complex on-board functionality for future spacecraft continues to rise, increasing the burden on often

small software teams. To handle the complexity of modern on-board software, model-driven methodologies can help to

capture the overall architecture and design of the software. In a later step, they also allow auto-generating source code

and documentation artifacts from the model, thereby relieving software developers from monotonous tasks.

In order to support model-based software development, the European Space Agency (ESA) provides The Assert Set of

Tools for Engineering (TASTE) and the On-Board Software Reference Architecture (OSRA). Both share some common

design concepts like separation of concerns, component-based modeling and graphical tooling for the design tasks.

However, OSRA targets mostly the design of spacecraft on-board software. At the same time, it leaves the concrete

implementation of the code generators to the entity using OSRA. TASTE, on the other hand, provides a more generic

framework, includes code generators for the C and Ada language and has also been applied in robotics applications as

well. Unfortunately, the interworking between the two frameworks lacks a mechanism to exchange data easily without

duplicating the data type information.

In complex software projects, data is exchanged by a plethora of software modules, potentially developed by different

software teams. To ensure safe data exchange inside a single as well as across many different modules, essentially three

basic problems need to be solved: First, there has to be a common source defining the data types, ideally with the option

to define constraints. Secondly, there needs to be some way to determine if a value is valid or not. Finally, there needs

to be a shared understanding about how to encode values of these data types. TASTE solves the first problem by

describing its data types through the language agnostic Abstract Syntax Notation One (ASN.1) notation. The second one

is addressed by generating test routines for validity checks during runtime. The last problem is solved by implementing

encoding rules of ASN.1 or by using a custom description for the encoding of data types using TASTE’s ASN.1 Control

Notation (ACN). OSRA currently only solves the first problem through its graphical data type editor.

Our goal is to allow the exchange of data between software developed with both tools without the need for manual

interventions. In the modeling phase this is mainly achieved by adding ASN.1 capabilities to OSRA: data exchange is

carried out between OSRA and TASTE applications by using the same ASN.1 representation for the data types. In

OSRA, data types are modeled graphically and are part of the overall model which is based on the Eclipse Modeling

Framework (EMF). We added plugins which auto-generate ASN.1 data types from this internal representation, allowing

TASTE to use them. The code-generators are implemented using the xtext/xtend framework. To make the integration

bi-directional, we also implemented a basic set of the ASN.1 grammar with the xtext programming framework. It

provides an editor with syntax highlighting for ASN.1, but more importantly, it allows to parse existing ASN.1 data

type descriptions, e.g. from TASTE, and register them as external types in the OSRA model. In the end, all available

data types, the ones generated by the graphical editor as well as textual ones, are captured in this model. With this

approach, the first problem is solved for OSRA and TASTE by the same way using an ASN.1 notation to describe data

types.

For solving the second problem for OSRA, we developed an alternative concrete implementation for the data types

generated from the ASN.1 type description. In contrast to TASTE’s asn1scc generator, the target language is not C but

modern C++ using features introduced in the new standards C++11 to C++17. DLR had successful missions with on-

board software written in a subset of the C++ language, such as the TET-1 and Eu:CROPIS satellite missions, the

MAIUS-1 sounding rocket mission, and continues this path in the upcoming ReFEx re-entry vehicle. With today’s wide

availability of compilers with support for modern C++ standards, even for embedded targets, it is now possible to

leverage the newly introduced features. At the same time, common constraints for spacecraft on-board software, e.g. the

avoidance of dynamic memory allocation, are kept.

The much more powerful templating system of modern C++ allows developing templated meta-classes for the common

base types with build-in constraint checking. For example, numerical types can check the values based on their ranges

and choice type variables can track their active field. In general, constraint compatibility is checked during type

conversion. Template meta-programming techniques, i.e. variadic templates, type traits, constant expressions and static

assertions, play a major role in the implementation. They direct the C++ compiler to generate the type checking for a

concrete type instance. Since template resolution in C++ needs to be carried out at compile time, also many checks will

produce a compile time error if certain conditions are not met, e.g. assigning numerical types with incompatible ranges,

thereby directly prohibiting the introduction of possibly dangerous code into the source tree.

In situations where compile-time checks are not possible, runtime checks are carried out. They are triggered

automatically by the type variable itself when its value changes, freeing the developer from remembering it manually

and avoiding code clutter. Finally, with the complexity for value checking captured in the type meta-classes, the C++

code produced by the code generator from the ASN.1 input is comparably simple. This increases maintainability for the

code generator. For numerical types, this can often mean simply a one line using statement. For structured types, only

the mapping between field name and type needs to be generated. This approach leads to a clean API for the users of the

type system.

To solve the problem with shared encoding rules between TASTE and OSRA, we added a prototype implementation for

a serialization mechanism to the aforementioned type system. It aims to be compatible with the ASN.1/ACN encoded

binary streams of TASTE. With this step, software developed with both frameworks can now exchange data based on

the same data type description. TASTE also supports additionally several ASN.1 encoding rules. This is currently not

the case for our data type framework. ACN was chosen for the first implementation since it allows the definition of

encoding rules which makes it applicable for existing communication protocols. However, the framework is flexible

enough to add further encoding rules in the future. The Basic Encoding Rules (BER) and Packed Encoding Rules (PER)

of ASN.1 are good candidates to add next.

This work shows the additions to the OSRA infrastructure in order to allow the exchange of data between OSRA and

TASTE based on the same data type descriptions in ASN.1. This includes enabling OSRA to read and write ASN.1 data

type descriptions, the implementation of the data types in modern C++ and the serialization of the data types into an

encoded binary compatible to TASTE. Some first results about the exchange of data between both frameworks are

presented in this work as well. Of course, the work presented here is not only useful for the data exchange between both

frameworks but also builds the basic type system on which our OSRA based code-generation can build upon in the

future.

TASTE: a toolchain for multicore TSP applications

Laura Gouveia1, Maxime Perrotin2, Thanassis Tsiodras3, Jérôme Hugues4, Daniel Silveira5

1 Laura Gouveia, GMV, lasequeiragouveia@gmv.com
2 Maxime Perrotin, ESA, maxime.perrotin@esa.int

3 Thanassis Tsiodras, ESA, thanassis.tsiodras@esa.int
4 Jérôme Hugues, CMU/SEI, jhugues@andrew.cmu.edu

5 Daniel Silveira, GMV, daniel.silveira@gmv.com

Keywords: Model-Based, Model Transformation, TASTE, AIR, AADL.

1 Introduction

TASTE, “The ASSERT Set of Tools for Engineering” [1], is a development environment dedicated to embedded,

real-time systems. It can be used to design small to medium-size systems, relying on formal languages and based

on the concept of building "correct by construction" software. It has been recently improved to include support

for Time and Space Partitioning (TSP) architectures, specifically GMV’s AIR hypervisor [2], and improve code

generation performance and tool expandability. In this, we addressed the challenge of generating an Execution

Platform with support for multiple partitions on a multicore CPU. TASTE’s new TSP functionalities are being

implemented in a complex use case, the EagleEye OBSW, deployed on a LEON4-N2X board [4] using AIR with

TSP and RTEMS RTOS in multicore [5].

2 Deploying a multicore TSP application using TASTE

Deploying a TSP application using TASTE is not different that a regular TASTE application. In the following,

we detail the extensions we performed on the various steps of the TASTE process. We recall the main steps:

 Interface View: The Interface View (IV) defines the

logical functions and their interactions within the

system. On the Interface View, functions are

defined and their interfaces are specified. TASTE is

then capable of generating the application code

skeletons, clearly identifying where user defines the

behaviour of the function. The user can specify the

function behaviour either in a programming

language (Ada, C, C++ and Micropython are

supported), or using a graphical modelling language

(SDL, Simulink, etc.), for which code cam be

generated and integrated automatically. The

Interface View remains unchanged for both TSP and non-TSP applications.

 Deployment View: The Deployment View (DV) shows how the logical functions of the system are

deployed on the target hardware. The Deployment View reuses predefined hardware component

descriptors that are available within an AADL library (HW Library). This library contains configuration

parameters for the operating system (processor) or the communication libraries (endpoints). These

elements are used by the Ocarina code generator and PolyORB-HI middleware to configure the system

on the target platform.

Figure 1 - TASTE Interface View

mailto:lasequeiragouveia@gmv.com
mailto:maxime.perrotin@esa.int
mailto:thanassis.tsiodras@esa.int
mailto:jhugues@andrew.cmu.edu
mailto:daniel.silveira@gmv.com

A set of additional entities and attributes has been

added to the Deployment View to support TSP

architectures. Time partitioning is defined by

additional scheduling attributes within the

Processor, whereas space partitioning requires the

definition of memory segments associated with

each Partition. Additional information such as the

criticality level of each Partition can be also

specified.

 Concurrency View: The Concurrency View is the

result of an automatic model transformation whose

inputs are the Interface and Deployment Views and

the output is a new AADL model including a multi-

threading architecture complying with the Ravenscar Computation Model (RCM). The concurrency view

is used to perform code generation, but also used scheduling analysis providing two scheduling analysis

functions by using Cheddar [6] and MAST [7]. In the Concurrency View, properties can be adjusted to

finely tune SMP usage, such as task allocation to core and priority.

3 Code generation and build system

3.1 PolyORB-HI

PolyORB-HI is the main execution platform used in TASTE. It provides the code that interacts with the

underlying operating system: RTEMS, GNAT, Linux, FreeRTOS, etc. PolyORB-HI was upgraded to support

the latest version of RTEMS that is compatible with multicore platforms and the AIR hypervisor. In particular,

PolyORB-HI can now interface its own communication mechanisms (queues, semaphores) with the inter-

partition ports provided by AIR.

3.2 Kazoo

Kazoo is the build system of TASTE. It is in charge of computing the set of runtime resources that are needed

to deploy the system on target according to the requirements from the Interface and Deployment Views. Kazoo

generates the Concurrency View, together with code that ensures the system orchestration together with

PolyORB-HI. In the scope of this work, Kazoo was extended to enable the deployment of threads on TSP

partitions. This was made possible by the flexible design of Kazoo, which allows creating new code generators

via a powerful templating engine.

4 Results and way forward

The main result of the study is an augmented MBSE toolchain that allows to specify and design multi-partition

communicating systems. It benefits from a mature MBSE process that abstracts away a lot of complexity and

facilitates the prototyping and deployment of TSP systems. The work is not over yet: support of I/O partitions

will shortly allow to have isolated hardware-software interactions ; scheduling analysis of TSP systems based

on the models ; finer-grain specification of the processor core usage in combination with multi-partitions ;

integration with system-level models (via OSRA), etc. MBSE allows for moving step by step from a manual,

error-prone development lifecycle to a much more solid and consistent process supported by tools.

Figure 2 - TASTE Deployment View with partition timing slots

definition

References

1. TASTE (The ASSERT Set of Tools for Engineering) Website: http://taste.tools

2. AIR Website: http://www.gmv.com/en/Products/air/
3. ESA Contract No. 4000121551/17/NL/FE for ITT AO/1-8834/17/NL/FE – Multicore implementation of the On-Board

Software Reference Architecture with IMA capability:

4. Andersson, J., Hjorth, M., Habinc, S., Gaisler J.: Development of a functional prototype of the quad core NGMP space

processor. In Proceedings of Aerospace Conference DASIA (2019).

5. RTEMS real time operating system (RTOS), 2020. https://www.rtems.org/
6. F. Singhoff, J. Legrand, L. Nana, L. Marcé. “Cheddar: a Flexible Real-Time Scheduling Framework”, ACM SIGAda Ada

Letters, 24(4):1-8, ACM Press. 2004

7. M. Gonzalez Harbour; J.J. Gutierrez Garcia; J.C. Palencia Gutierrez; J.M. Drake Moyano. MAST: Modeling and analysis

suite for real time applications, Proceedings 13th Euromicro Conference on Real-Time Systems, IEEE, 13-15 June 2001.

http://taste.tools/
http://www.gmv.com/en/Products/air/
https://www.rtems.org/

“CORA-MBAD FOR ZYNQ 7000: MODEL BASED DEFINITION AND
IMPLEMENTATION OF RECONFIGURABLE COTS AVIONICS”

Tiago Jorge (*), Laura Gouveia (*), Rubén Domingo (*), Fernando Pousa (*), David Arjona (*), Elena Alaña

(*), Fabrizio Ferrandi (+), Thanassis Tsiodras (‡), Christophe Honvault (‡)

(*) GMV Aerospace and Defence
(+) Politecnico di Milano

 (‡) European Space Agency

1. INTRODUCTION

The CoRA-MBAD activity (“Compact
Reconfigurable Avionics - Model Based
Avionics Design”) was aimed at developing a
HW/SW co-design toolchain providing
functionality to easily deploy functional blocks
in either HW or SW implementations, from
identical source models. The toolchain
developed for CoRA-MBAD was based on the
TASTE toolset [1] and targeted a GR740
general-purpose processor coupled to a
BRAVE reconfigurable FPGA. In this follow
up activity, “CoRA-MBAD for ZynQ 7000”, we
adapt said toolchain to a ZynQ 7000 SoC target,
motivated by low-cost missions that will use
platforms based on COTS components such as
this Xilinx SoC – which includes a dual-core
ARM processor and a large reconfigurable
FPGA.

2. OVERVIEW

To switch between HW and SW forms, the
toolchain implements the automatic
transformation of C source code (whether
manually written or generated by a code
generator like those in Matlab/Simulink) into
Hardware (VHDL) source files. It additionally
performs an automatic generation of the needed
consistent communication interfaces
supporting the exchange of commands and data
between functional blocks executed on the
processing system (PS) and on the
programmable logic (PL) sides of the Xilinx
SoC. This required adding support for the ARM
Cortex A9 development toolchain (RTEMS
ARM support), the Xilinx FPGA development
toolchain (Vivado), and for the Advanced

eXtensible Interface (AXI) communication
interface for on-chip communication.
The toolchain was adapted to leverage the latest
TASTE enhancements. The TASTE’s Kazoo
tool [2] was adapted to build the modeled
systems with significantly increased build
performance, especially in rebuilds. It
efficiently produces derived models, code and
scripts using AdaCore’s “templates-parser” for
templates processing and files generation.
For Matlab/Simulink models, the MBAD
System relies on model-to-code transformation
performed by MathWorks Embedded Coder [3]
and on high-level synthesis of C code
performed by Bambu [4]. Note that both
TASTE and Bambu are open-source SW tools,
so subsystems built in pure C can be
synthesized and executed on the FPGA with no
external dependencies. Bambu is FPGA vendor
independent, hence it can be used with minor
adaptations needed for each FPGA specific
component.
The demonstrator use case is based on a
computer vision algorithm that is used for
vision-based navigation in the HERA project.

3. MODEL-BASED APPROACH

The complete automation and resulting cost
effective extensibility made possible by the
toolchain is not an easy feat to achieve since
several elements need to come together, namely
(see also Figure 1):
1) Basic SW and HW reusable elements: a)
(SW) The RTEMS 5.1 custom built cross-
compiler for ARM Cortex A9, equipped with
the needed BSPs and validated on target.
Additionally, some verification efforts
necessarily have to target low level real time
concerns such as CPU and task management,

clock frequency configuration, etc.; b) (SW) An
AXI IP core control driver providing the
necessarily interface configuration,
initialization and read/write access to the SW
applications. c) (HW) An AXI interconnect IP
Core to manage and connect the AXI ports in
the PS with the AXI ports of each of the
modules/IPs implemented in the PL. At the
same time, an AXI DMA IP controller to
manage stream data transmissions between PS
and PL.
2) Extensible model-based environments with
high degree of automatism: a) TASTE provides
heterogeneous application level modeling and
implementation facilities, and importantly
transparent and robust middleware level
automation capabilities, in particular for
communication aspects. TASTE’s Kazoo
allows for simple expansion and update of the
supported targets, while improving code
generation and build time; b) Vivado is an EDA
(Electronic Design Automation) tool for FPGA
and SoC, developed by Xilinx, with capabilities
for low and high level synthesis, bitstream
generation, timing analysis, simulation, etc. c)
Matlab Simulink commonly used by domain
engineers to design dynamic systems, e.g. the
control and guidance of satellites designed by a
GNC team, producing cyclically actuation data
from sensor data, are best modelled with
mathematics, data flows or functional models.
This environment is extensible to e.g.
incorporate as well autocoding facilities such as
Embedded Coder.
3) A pivot open toolchain gluing all elements
together: TASTE, being an open framework
targeting heterogeneous systems, is particular
suitable to integrate and orchestrate all the other
necessary elements. E.g. from a common
ASN.1 data model and an AADL minimalistic
component interface model it consistently and
automatically exports: a) interface definition in
the target language of choice with consistent
inputs and outputs (in our demonstrator a
Simulink model); b) SW and HW wrapper
interface code that transparently guarantees the
correct communication between the target’s
functions. Importantly these interface wrappers

automatically grow or shrink according to the
number and type of inputs and outputs; c) SW
device driver to provide SW-HW
communication with the HW implementation
of the target function; d) “Bridge” code with the
necessary adaptations and extra inputs needed
in the transition between two autocoding tools,
in this case between Embedded Coder and
Bambu. Additionally, TASTE e) integrates the
custom cross-compiler (1-a) as part of a new
deployment target, f) links with the necessary
bus drivers (1-b), g) maps with the needed HW
BSP exported from (1-c, 2-b), h) orchestrates
the calls to all needed autocode and compilation
tooling - e.g. forwarding the Embedded Coder
output as a Bambu input together with the
generated consistent bridge (3-d) and finally
calling the synthesis facilities of Vivado (2-b).
4) Multifaceted team in co-engineering: The
high technical degree of the activity required
the diverse skills and close collaboration of a:
a) SW engineer (1-a/b, 3-c/f), HW engineer (1-
c, 2-b, 3-b/g), design environment engineer (2-
a, 3-a/b/c/d/e/h), and domain engineer (2-c).

Figure 1 Toolchain overview

4. HW PROCESSING CAPABILITIES

CoRA-ZynQ makes use of AXI bridges of
Zynq-7000 architecture to connect PS with PL.
Three independent interfaces are implemented
in order to provide different capabilities: One
AXI interface used to write and read
configuration registers, one AXI interface fully
devoted to write and read large blocks of
memory inside FPGA, and finally, one AXI

stream interface to support stream data
processing. The number of registers or
memories addressed through AXI interfaces
can be configured to optimize the resource
allocation of the FPGA. In addition, AXI
stream transmission can be directed to achieve
up to 32 different destinations through the same
interface.

5. USE CASES

The use cases implemented have as prime
objectives to 1) demonstrate the toolchain new
target support and to 2) support a space
representative application. Objective 1 was
fully achieved with simple use cases. Objective
2 is presently partially achieved with work still
ongoing. A preliminary version of the HERA
mission computer-vision Lambertian sphere
matching of asteroid body algorithm was re-
used in this context. The Matlab design reused
is not tailored for a HW implementation (e.g. no
parallel nor fixed-point design) which naturally
represents some challenges to the autocoding
facilities and HW resource usage. Such
tailoring was not yet performed due to project
scope and time availability. Targeting
prototyping activities, the present approach is
instead leveraging to the maximum possible
extent the configurability and autocoding
strengths of the toolchain, avoiding any manual
work, e.g. by exploring the rich Embedded
Coder and Bambu options, types of possible
SW-HW interfaces generated (e.g. external
memory access, streaming type parameters) and
resulting HW resource allocation.

[1] "TASTE," European Space Agency,
[Online]. Available: https://taste.tools.

[2] [Online]. Available:
http://taste.tuxfamily.org/wiki/index.php?
title=Kazoo.

[3] [Online]. Available:
https://www.mathworks.com/products/e
mbedded-coder.html.

[4] P. d. Milano, "PandA," [Online].
Available: https://panda.dei.polimi.it/.

Model Based Space Systems and Software Engineering (MBSE2020)
28-29 September 2020, ESA-ESTEC, Noordwijk, The Netherlands

ENABLING COMBINING MODELS AND TOOLS IN AN ONLINE MBSE COLLABORATION
PLATFORM

Peter Gorm Larsen (1), Georgia Soulioti (2), Hugo Daniel Macedo (1), Vagelis Alifragkis (2), John Fitzgerald (3),
Nikolaos Livanos (2), Holger Pfeifer (4), Mauro Pasquinelli (5), Martin Benedict (6), Casper Thule (1), Stefano
Tonetta (7), Bernd Stritzelberger (8), Angelo Marguglio (9), Lorenzo Franco Sutton (9), Martin Obstbaum (8),
Sergio Gusmeroli (10), Frank Beutenmüller (8), George Suciu Jr.(11), Quirien Wijnands (12) , Prasad Talasila(1)

(1) DIGIT, Aarhus University, Finlandsgade 22, 8200 Aarhus N, Denmark
(2) EMTECH SPACE P.C., 32 Korinthou & S.Davaki, 14451, Athens, Greece

(3) Newcastle University, Newcastle NE1 7RU, UK
(4) Fortiss, Guerickestraße 25, 80805 Munich, Germany

(5) Thales Alenia Space Italia S.p.A, Strada Antica di Collegno 253, 10146 Torino, Italy
(6) Virtual Vehicle, Inffeldgasse 21a, 8010 Graz, Austria

(7) FBK, Via Sommarive, 18 – POVO, 38123 Trento, Italy
(8) TWT GmbH Science & Innovation, Ernsthaldenstr. 17, 70565 Stuttgart, Germany

(9) Engineering Ingegneria Informatica S.p.A., Piazzale Dell’Agricolture 24, 00144 Roma, Italy
(10) Politechnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Italy

(11) BEIA Consult International, Str. Poiana Narciselor, Nr. 12, Sect. 1 Bucharest, Romania
(12) ESA/ESTEC, Keplerlaan 1 2200 AG Noordwijk, The Netherlands

EXTENDED ABSTRACT
This paper provides an introduction about two projects and suggests how the models and tools from these could potentially
be combined in the future. The projects are ACoSim supported by ESA and HUBCAP supported by the EU H2020
programme.
Since the domain of Space System Engineering, started to move away from the document-centric approach towards a
Model-Based System Engineering (MBSE) approach, many standardization efforts have targeted the facilitation of
Simulation Model’s exchange and reuse. During these efforts, it was quickly recognized that not only the
source/executable code of a model are important but also the complete life-cycle data needs to be considered to make
reuse truly possible. In this respect, ECSS-E-TM-10-23 attempts to standardize topics like data exchange, semantics of
the data, and repository, in order to facilitate exchange between stakeholders.
However, as there is a very tight relationship between the Product/System that is under design/development and needs to
be verified, and the System Simulation Facility (SSF) that is built as part of this verification, to truly make reuse possible,
it is important that the MBSE approach is extended to also consider the SSFs and the corresponding simulation models.
Also, whereas in the past the SSFs development was carried out by dedicated teams based on requirements specifications,
currently there is an increased tendency to incorporate and integrate the domain specific simulation models. This joint
simulation can provide a higher level of fidelity. These situations are just some examples of the areas in which Co-
Simulation could potentially play an important role.
The main challenge in the Co-Simulation of space simulators is to create a solution that would integrate a variety of
simulators, modelling frameworks, databases, visualizers and reporting systems into a simulation that is distributed across
various nodes. Preferably not excluding the heritage of space domain modelling and simulation, e.g. the used simulation
kernels, standards and reference architectures. The idea is the creation of a Co-Simulation in which each application
(consisting of models and solvers) executes in its own native environment, with the highest possible fidelity
representative, for that purpose, of the specialized tool(s) used in the respective discipline. In order to do so, the process
of setting up co-simulation needs to start during the early phases of the space systems’ development, and the above
challenges have to be taken into account while eliciting the requirements and performing the architectural design of the
system models (during the MBSE process).
In this regard, the Application of Co-Simulation to support Tests and Operations (ACoSim) tries to bridge the gap between
model-based system representation methods and the cross-domain SSFs, using combinations of MBSE and Co-Simulation
enablers. For this study, three SSFs are focused that according to ECSS-E-TM-10-21 are very often recurring and amongst
which much commonality exists. These SSFs are the Functional Engineering Simulator (FES), the Software Verification
Facility (SVF) and the Training, Operations and Maintenance Simulator (TOMS).
A model-based approach is used to demonstrate concepts of: “how the system level architecture can be mapped down to
a simulation architecture” and “how a formal model can be used to derive simulation-related information”. This can be
done through the usage of a common model-based definition by the system engineering team and the simulation team.

Model Based Space Systems and Software Engineering (MBSE2020)
28-29 September 2020, ESA-ESTEC, Noordwijk, The Netherlands

For the System Level Modelling, the Capella open source tool, developed by Thales has been used. Capella implements
ARCADIA, a system engineering method based on the use of an MBSE model. The study provides an analysis of different
initiatives and the relationship with standardization initiatives such as the ECSS-E-TM-10-23. Without loss of generality,
only three disciplines were taken into account: GNC, Thermal and Electrical Power Management.
In the ARCADIA method, the Logical Architecture defines the functions, the exchanges between the functions and the
allocation to each logical component. This is the starting point for the definition of the spacecraft physical architecture,
but at the same time can also be used for the Functional Engineering Simulator. The Physical Architecture defines the
HW/SW implementation. Mapping between logical components and HW/SW implementation provides the input for the
mapping between the FES and the SVF in terms of control functions implemented by software or other means. The SVF
is mapped to the Physical Architectures (and so, indirectly, also to the Logical Architecture, so to be able to analyze the
transition between FES and SVF) The SVF and the FES can be enhanced (through bottom-up approach) to cover also
AIV and TOMS needs.

Figure 1: AComSim Logical Architecture

The ACoSim Consortium is currently implementing the End-to-End concept with main principle to validate and enhance
the proposed Co-Simulation Verification & Validation (V&V) methodology. In this regard, the Functional Mockup
Interface (FMI) used in automotive industry to support Co-Simulation has been explored in ACOSIM as a candidate for
facilitating the Co-Simulation in the space domain [Blockwitz14]. The advantages as known from the non-space domain
when it comes to FMI-based Co-Simulations are easy: exchange of component/models, IP protection mechanisms,
gaining robustness in the workflows, and coupling-possibilities of different domains and tools.
In doing so, the thermal and power discipline models as generated for the FES in MATLAB/Simulink, as well as the
C/C++ GNC model, have been exported as FMI-compliant models e.g. Functional Mockup Units (FMUs), and the
underlying FES scenario was executed as an FMI-based Co-Simulation. For the execution purposes, the INTO-CPS
(Cyber-Physical Systems) Co-Simulation Orchestration Engine (COE) developed by Aarhus University [Thule&19], is
used as the software controlling the simulation execution.
Furthermore, the reuse of these FES FMU models into SVF and TOMS environments is demonstrated within the context
of ACOSIM. To achieve such reuse, generic software components have been developed. These are the so-called Enablers
of the Co-Simulation that can act as building-blocks for future Co-Simulation developments. These Enablers mainly
concern the interfaces/bridges of the SMP2 compliant facilities used (EuroSim for SVF and SIMULUS for TOMS) with
the FMI Co-Simulation Orchestration Engine Maestro (developed by AU) as well as a bridge between SIMULUS and
EuroSim environments. The latter will be developed based on the SimBridge application; a tool developed by EMTECH
to enable communication between SMP2-compliant environments and external COTS tools.
Another Enabler developed by TWT, bridges the gap between the Capella modelling and the system repository with
respect to the Simulation Meta Model: an automated procedure analyzes the system architecture and design as modelled
in Capella and detects possible design changes. By applying various logics and identifying dependencies between the
different artefacts, the system design as well as the Verification Model and Verification Environment using the FMUs
and Maestro, can be tracked using the SADM server functionality, developed in the NMM (New modelling Methods in
Simulation, Verification and Validation) ESA project. Next to the dependency tracing it is also shown that an automated
initialization of the Co-Simulation setup becomes feasible.

Model Based Space Systems and Software Engineering (MBSE2020)
28-29 September 2020, ESA-ESTEC, Noordwijk, The Netherlands

The overall added value of the ACoSim project is a new methodology of how Co-Simulation methods and tools are
coupled with cross-domain MBSE methods and tools to enhance the System Level Verification & Validation process in
the space domain.
In such multi-partner collaborative projects, that are increasingly common in the space sector, getting started with MBSE
is a challenge. This is particularly true for SMEs because of the need to acquire and manage unfamiliar tools and integrate
them with others in the collaboration. This is made worse by a lack of existing models from which to start, and by the
difficulty of accessing experience and expertise. An alternative to a substantial initial infrastructure investment is
proposed by the HUBCAP project, which enables potential users to use a ‘pay per use’ schema, more attractive for SMEs.
The platform would: (a) help users select MBSE tools to incorporate in current work; (b) be configurable to allow
organisations to exchange models produced using different tools, including co-simulation of heterogeneous models
[Gomes&18]; (c) protect IP by permitting sharing as ‘black boxes’ (e.g., as in the FMI standard); and (d) provide access
to existing models as bases for development, with collaboration functionality to help access others’ expertise.
FMI is supported by many tools such as OpenModelica [Fritzson14] and the ESA-funded ACoSim project aims to
demonstrate how it is possible to incorporate FMI for modelling and simulation at different levels of ESAs Space

Simulation Facilities activities.1 Benefits include faster convergence to collaborative models that can be shared through
the supply chain, accommodating impact analysis of proposed changes. The configurability enables integration of
physical components with their digital twins, saving production and maintaining V&V fidelity. This includes integration
of complex multi-body models, for example during mission feasibility analysis.
The innovation necessary to create the collaboration platform is being supported by the HUBCAP project [Larsen&20]2.
The platform builds on top of the DIHIWARE open source solution3 developed by ENGINEERING, which supports
asset-need matching and joint innovation. DIHIWARE has four main subsystems: an Identity Manager manages user
authentication and access control; a Marketplace handles catalogues in which MBSE assets and services will be shared;
a Knowledge Base supports semantic indexing and retrieval; a Social Portal offers tools for collaboration, matchmaking,
and expert search.
HUBCAP extends the DIHIWARE solution with a sandbox capability supporting white-box, grey-box and black-box
models, with FMI enabling co-simulation. A sandbox (Figure 1) is a set of Virtual Machines (VMs), each one a CPS tool,
interacting over a virtual dedicated subnet and NFS storage. No interaction is permitted between VMs in different
sandboxes, but only within the same sandbox. The Sandboxes Broker hosts a web application mediating user access over
an Internet browser and has access to the catalogues of available assets. Operation of user requests and sandboxing logic
are provided by the Sandboxing Kernel, which interacts with the system Hypervisor to launch the constituents of a
sandbox. The Sandboxes Metadata stores and tracks sandboxes' states and user ownership of the resources.
The sandbox design itself should ease security auditing and assurance, for example by following a trusted kernel
architecture. Moreover, the components of the sandbox kernel are open source and the security will be based on Data-
Service Sovereignty principles in order to enhance trust among beneficiaries and to enable use of known malware

1 See https://digit.au.dk/research-projects/acosim/
2 EC H2020 Innovation Action starting January 2020. See http://www.hubcap.eu/
3 Developed in the MIDIH project See http://www.midih.eu/

Figure 2: The HUBCAP Sandbox architecture

https://digit.au.dk/research-projects/acosim/
http://www.hubcap.eu/
http://www.midih.eu/

Model Based Space Systems and Software Engineering (MBSE2020)
28-29 September 2020, ESA-ESTEC, Noordwijk, The Netherlands

detection techniques. Secure isolation and Security Information and Event Management can ensure that aggregated
data/log records can be analysed giving a picture of what is happening on the platform.
The platform will provide access to assets including models and analytic capabilities of tools as services to be tested in a
sandbox. Services will include modelling support with components, contracts, and equations, and analysis based on
simulation, model checking, model-based safety analysis, synthesis of HW/SW deployments, fault detection and
recovery, and planning. We anticipate that the platform's user community will integrate models to assist newcomers to
specific modelling tools and tool combinations. Initially, we would expect to include models from standards and tutorials
such as those of the INTO-CPS tool chain and those of the COMPASS tool chain developed in various ESA studies
[Bozzano&19].
Models and services will be presented to the user in catalogues, where the users will choose the tool, the kind of analysis
they want to try, and existing models associated to it to exemplify the usage. The platform will create a dedicated sandbox
with the tool installed and the desired models ready to be used, allowing the user to perform and evaluate the analysis on
the chosen model. Users will be able to write their own models and test tools’ capabilities. If needed, the users will be
able to get support by the tool experts via the collaboration services of the platform.
The HUBCAP Platform is under development, and we expect the first public version in late 2020. Our hope is that the
ecosystem supported by this platform might encourage development of MBSE through “servitisation”. In the future, users
and tool suppliers will explore, share, and buy CPS assets (models, tools, services, training) from across the ecosystem
through a ‘test-before-invest’ sandbox and -- at least in some cases -- integrated ‘pay-as-you-go’ charging.
We expect that, in populating the platform, we will meet limitations in the capabilities of both tools and the sandbox
architecture. There may be challenges in OS licensing, and in tools that have particular hardware support needs that may
not easily be supported in a sandbox context. Nevertheless, we hope that the HUBCAP Platform will be extended in
several directions enabling true collaboration between diverse participants in major projects of the future.
In conclusion, the ACoSim project has analyzed and is demonstrating how Co-Simulation methods and tools can be
integrated into the space domain simulation realm. In doing so, cross-domain modelling and simulation and MBSE
methods and tools are considered as part of a proposed “improved Functional System Verification and Validation using
Co-Simulation” methodology. Using the HUBCAP technology, it would be possible to include all the necessary models
and tools in each their own VM and in this way it would essentially be a manner of combining such VMs in one sandbox
and then one would be able to combine the different simulators on one server and access this from a standard browser. It
is in theory possible to securely extend the sandbox to include federated and cloud-based simulation units. To securely
extend the sandbox, the sandbox network needs to securely connect to hosts / networks running the simulation units
[RFC3457]. Such an extension helps include proprietary simulation units in a sandbox environment.

References
[Blochwitz14] Torsten Blochwitz, Functional Mock-up Interface for Model Exchange and Co-Simulation
(version 2.0), July 2014.
[Bozzano&19] Marco Bozzano, Harold Bruintjes, Alessandro Cimatti, Joost-Pieter Katoen, Thomas Noll,
Stefano Tonetta: COMPASS 3.0. TACAS (1) 2019: 379-385
[Fritzson14] Peter Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A
Cyber-Physical Approach, 2014.
[Gomes&18] Claudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen and Hans Vangheluwe, Co-
simulation: a Survey, ACM Computing Surveys, 51(3), May 2018.
[Larsen&20] Peter Gorm Larsen, Hugo Daniel Macedo, John Fitzgerald, Holger Pfeifer, Martin Benedict,
Stefano Tonetta, Angelo Marguglio, Sergio Gusmeroli and George Suciu Jr., A Cloud-Based Collaboration
Platform for Model-Based Design of Cyber-Physical Systems, SimulTech, July 2020.
[RFC3457] Requirements for IPsec Remote Access Scenarios, RFC standard, 2003,
http://www.rfcsearch.org/rfcview/RFC/3457.html.
[Thule&19] Casper Thule, Kenneth Lausdahl, Claudio Gomes, Gerd Meisl and Peter Gorm Larsen, Maestro:
The INTO-CPS Co-Simulation Co-Simulation Framework, Simulation Modelling Practice and Theory, vol
92, pp 45—61, 2019.

http://www.rfcsearch.org/rfcview/RFC/3457.html

Model Based Space Systems and Software Engineering MBSE2020
 ESTEC (Noordwijk, NL) on 28-29 September 2020

CLOUDSF - A CONTINUOUS INTEGRATION FRAMEWORK FOR THE DESIGN AND

VALIDATION OF CYBER-PHYSICAL SYSTEMS

Gianmaria Bullegas1, Anurag Kapur1, Mini C Saaj2, Manu H. Nair2, Adrian Pop3, Peter Fritzson3

Affiliations: 1Perpetual Labs Ltd, 2University of Lincoln, 3Linköpings universitet
 Email: gian@perpetuallabs.io, anurag@perpetuallabs.io, msaaj@lincoln.ac.uk,

18710796@students.lincoln.ac.uk, adrian.pop@ri.se, peter.fritzson@liu.se.

Keywords: MBSE, LAST, FMI, FMU, Modelling, Co-simulation

Figure 1. Schematic representation of Perpetual Labs’ CloudSF platform in relation to the different
engineering disciplines and business functions. These could be part of a single organization or being

distributed across the supply chain (i.e. extended enterprise.

Introduction
The extensive use of virtual prototyping methods has become an indispensable tool in the context of
Model-Based Design of complex space missions. Modelling the behaviour of such missions often requires
considering systems that are composed of physical subsystems (usually from different physical domains)
together with computing and networking. These are generally referred to as Cyber-Physical Systems (CPS).

A frequent problem in larger space projects is that, although component-level models and simulations are
available, it is a big hurdle to integrate them into larger system-level simulations. This is because different
development groups and disciplines, e.g., electrical, mechanical, power, and software, often use their own
approaches and dedicated tools for modelling and simulation.

The Functional Mock-up Interface (FMI) [1] has been developed as a standardized exchange format for
behavioural models to improve the interoperability of domain-specific models. Model components are
exported as Functional Mock-up Units (FMUs) from their respective discipline specific tool. Then a

https://www.perpetuallabs.io/
https://staff.lincoln.ac.uk/f3bf7246-9b69-4e6c-9157-f8c4d7221fc3
https://www.ida.liu.se/~petfr27/
mailto:gian@perpetuallabs.io
mailto:anurag@perpetuallabs.io
mailto:Msaaj@lincoln.ac.uk
mailto:18710796@students.lincoln.ac.uk
mailto:adrian.pop@ri.se
mailto:peter.fritzson@liu.se
https://paperpile.com/c/HjRZhZ/NJYX

Gianmaria Bullegas1, Anurag Kapur1, Mini C Saaj2, Manu H. Nair2, Adrian Pop3, Peter Fritzson3

dedicated simulator tool can import the FMUs in a co-simulation environment and integrate them into a
composite model of the entire CPS using a suitable master algorithm for coupling the individual units.

However, coupling the different simulator codes contained in the individual FMUs to perform full-system
simulation still presents major challenges and is an active research area. Some of the main challenges are:

● Numerical stability: modular simulation of a global system by coupling different simulator codes
may easily result in an unstable integration [2].

● Uncertainty quantification: this is particularly important for large composite system simulations
where the uncertainty propagation could rapidly undermine the confidence in the simulation results.

● Computational scalability: high-fidelity N-code simulations (FEA, CFD, logical) can take as much
as 1 h CPU-time for every real-time second of behaviour prediction [3]. This type of analysis
requires significant computational resources which in turn put high-demand on the
High-Performance-Computing (HPC) infrastructure.

In addition to the core technical challenges listed above, there are challenges related to the adoption of such
virtual prototyping environments at the organizational level. These include:

● Integration with overarching SE framework and toolchains: during system development,
heterogeneous artefacts are generated, often using different lifecycle modeling languages and
simulation tools, leading to integration and interoperability issues.

● User Interface: the virtual prototyping environment must be accessible through an integrated
Modelling and Simulation Environment.

● Multi-user collaboration: design of complex CPS requires expertise in many different domains and
often results in large cross-functional teams. Coordinating the exchange of data and information
from the different domains is a major challenge and an active research area.

It is understood that collaborative web-based tools and model editors, supported by a powerful system
ontology and data infrastructure in the backend, are key to tackle these problems.

The Cloud System Factory (CloudSF) platform

https://paperpile.com/c/HjRZhZ/7nHSR
https://paperpile.com/c/HjRZhZ/rd5AQ

Model Based Space Systems and Software Engineering MBSE2020
 ESTEC (Noordwijk, NL) on 28-29 September 2020

Figure 2 Schematic representation of Perpetual Labs’ CloudSF platform in relation to the different stages
of the system development life cycle and the corresponding systems engineering processes.

Perpetual Labs is developing a new software platform for collaborative design of CPS called Cloud System
Factory (CloudSF). It enables all the stakeholders of a complex engineering system to exchange system data
and engineering artefacts independently of the specific tools that they are using (see figure 1). It includes the
following key components and features:

● Conceptual Data Model (System Ontology) environment. It uses a Linked Data approach to
capture traceability information and create semantic links that relate heterogeneous artefacts through
the product design lifecycle. The traceability data is stored in a graph database which enables
artefacts from different tools to be connected and queried through a standardized interface and
language.

● Virtual Prototyping and system verification environment (ViPro): It enables scenario-based
simulation at the system-level (composite model) for model-based verification of system
requirements. It significantly reduces the need for physical integration and requirement verification
testing. It enables the application of Continuous Integration practices to the design of CPSs.

● Web-based Integrated Design, modelling and simulation Environment (IDE): It provides
support for the major development phases, such as requirements analysis, system modelling,
verification and maintenance through well-integrated and easy-to-use functions. It automates the
process of submission of simulation tasks to computing platforms, monitoring, retrieval and analysis
of results. It provides real-time collaborative model editing features.

● Digital Dashboard (Dashboard): It enables the creation of customizable viewpoints on the
engineering data depending on the specific domain and business function. It allows users to leverage
the power of semantic query languages (such as SPARQL) to interrogate the system ontology and
engineering database in a fast and intuitive way to support system analysis and automated report
generation.

The CloudSF platform supports a Linked Data approach through the adoption of the Open Services for
Lifecyle Collaboration (OSLC) standard connectors [4]. This solution enables the definition of the semantic
relationships between the different engineering artefacts in a tool-independent fashion and the easy creation
and maintenance of a global system ontology. The OSLC standard natively supports any RDF-based
ontology language such as WeB Ontology Language (OWL) [5] and, for extension, the Object Role
Methodology (ORM) [6] and Ontological Modelling Language (OML) [7]. For an updated list of lifecycle
tools that support OSLC APIs, see [8]. The use of Linked Data, supported by a global system ontology,
allows to easily establish and maintain a single source of truth across the structure of the extended enterprise
and throughout the product development lifecycle (see figure 2).

Technology application
There is an urge for developing novel Robotics, Automation and AI (RAAI) technologies that will facilitate
in-space manufacturing and assembly of Large-Aperture Space Telescopes (LASTs), instead of Earth-based
assembly (figure 3). Advancements in RAAI is also indispensable for active debris removal missions,
spacecraft servicing operations in LEO/GEO (life extension, refuelling, orbit correction), space-based power
generation and in-space assembly of other larger structures like super-large Radars and Synthetic Aperture
Radars.

The main challenge in the development of RAAI technologies for space missions is the increasing
complexity of these systems. In particular, this is due to the rising importance of connectivity and
non-deterministic software components (such as Machine Learning and Artificial Intelligence for machine
vision and manipulation). Another important challenge is the necessity for collaboration of multiple entities
with different design processes and tools.

https://paperpile.com/c/HjRZhZ/Kl5Q
https://paperpile.com/c/HjRZhZ/Vz1L
https://paperpile.com/c/HjRZhZ/yzZg
https://paperpile.com/c/HjRZhZ/oawt
https://paperpile.com/c/HjRZhZ/dXDXe

Gianmaria Bullegas1, Anurag Kapur1, Mini C Saaj2, Manu H. Nair2, Adrian Pop3, Peter Fritzson3

Figure 3. Robotic assembly of LAST mission, rendering courtesy of L-CAS centre at the University of
Lincoln.

The proposed benefits of the CloudSF platform will be demonstrated and measured through the application
of said platform to the model-based design and verification of a robotic system for on-orbit assembly of
telescopic structures using an End-Over-End Walking robot, called the E-Walker (see figure 3) [9,10].

REFERENCES

[1] Functional Mock-up Interface, (n.d.). https://fmi-standard.org/ (accessed March 13, 2020).
[2] T. Schierz, M. Arnold, C. Clauss, Co-simulation with communication step size control in an FMI compatible

master algorithm, Proceedings of the 9th International MODELICA Conference, September 3-5, 2012, Munich,
Germany. (2012). https://doi.org/10.3384/ecp12076205.

[3] A. Van der Velden, High-Fidelity Simulation Surrogate Models for Systems Engineering, in: Disciplinary
Convergence in Systems Engineering Research, Springer, Cham, 2018: pp. 327–339.

[4] Open Services for Lifecycle Collaboration, (n.d.). https://open-services.net/ (accessed August 16, 2020).
[5] OWL - Semantic Web Standards, (n.d.). https://www.w3.org/OWL (accessed August 16, 2020).
[6] Contributors to Wikimedia projects, Object-role modeling, (2004).

https://en.wikipedia.org/wiki/Object-role_modeling (accessed August 16, 2020).
[7] opencaesar, opencaesar/oml, (n.d.). https://github.com/opencaesar/oml (accessed August 16, 2020).
[8] OSLC Fest 2020, Day 1, 2020. https://www.youtube.com/watch?v=FxMAyHqEay8 (accessed July 22, 2020).
[9] A. Nanjangud, P.C. Blacker, A. Young, C.M. Saaj, C.I. Underwood, S. Eckersley, M. Sweeting, P. Bianco,

Robotic architectures for the on-orbit assembly of large space telescopes, in: Proceedings of the Advanced Space
Technologies in Robotics and Automation (ASTRA 2019) Symposium, European Space Agency (ESA), 2019.
http://epubs.surrey.ac.uk/851853/7/19_nanjangud.pdf (accessed July 22, 2020).

[10] A. Nanjangud, C.I. Underwood, C.P. Bridges, C.M. Saaj, S. Eckersley, M. Sweeting, P. Biancod, Towards Robotic
On-Orbit Assembly of Large Space Telescopes: Mission Architectures, Concepts, and Analyses, in: Proceedings of
the International Astronautical Congress, IAC, International Astronautical Federation, 2019: pp. 1–25.

https://paperpile.com/c/HjRZhZ/Zis78+Okcfq
http://paperpile.com/b/HjRZhZ/NJYX
https://fmi-standard.org/
http://paperpile.com/b/HjRZhZ/NJYX
http://paperpile.com/b/HjRZhZ/7nHSR
http://paperpile.com/b/HjRZhZ/7nHSR
http://paperpile.com/b/HjRZhZ/7nHSR
http://dx.doi.org/10.3384/ecp12076205.
http://paperpile.com/b/HjRZhZ/rd5AQ
http://paperpile.com/b/HjRZhZ/rd5AQ
http://paperpile.com/b/HjRZhZ/Kl5Q
https://open-services.net/
http://paperpile.com/b/HjRZhZ/Kl5Q
http://paperpile.com/b/HjRZhZ/Vz1L
https://www.w3.org/OWL
http://paperpile.com/b/HjRZhZ/Vz1L
http://paperpile.com/b/HjRZhZ/yzZg
https://en.wikipedia.org/wiki/Object-role_modeling
http://paperpile.com/b/HjRZhZ/yzZg
http://paperpile.com/b/HjRZhZ/oawt
https://github.com/opencaesar/oml
http://paperpile.com/b/HjRZhZ/oawt
http://paperpile.com/b/HjRZhZ/dXDXe
https://www.youtube.com/watch?v=FxMAyHqEay8
http://paperpile.com/b/HjRZhZ/dXDXe
http://paperpile.com/b/HjRZhZ/Zis78
http://paperpile.com/b/HjRZhZ/Zis78
http://paperpile.com/b/HjRZhZ/Zis78
http://epubs.surrey.ac.uk/851853/7/19_nanjangud.pdf
http://paperpile.com/b/HjRZhZ/Zis78
http://paperpile.com/b/HjRZhZ/Okcfq
http://paperpile.com/b/HjRZhZ/Okcfq
http://paperpile.com/b/HjRZhZ/Okcfq

Bridging the Gap between On Board and Ground Configuration
Data Bases

Flying an Onboard Software (OBSW) is not just flashing the EEPROM. The binary image has to be
delivered together with source code and memory map, but also with many software artifacts such as
User and Operation Manual (UOM), Interface Control Documents (ICDs), Test Environments and
Satellite Reference Database (SRDB) for configuring the Ground Facilities. Most of these artifacts are
developed independently from each other, the coherency of the complete set being verified through
long reviews and exhaustive integrated tests that comes at a late stage in the process.

A more efficient way is to ensure coherency by deriving all these products from a single source of truth
based on a single formalism, through validated chains of model transformations. Some initiatives have
shown the benefits of such approaches. These are however for now mainly limited to flight code, test
environment and interface document. It is proposed to extend them to the configuration Ground
Facilities.

The PUS-C Gen study has for instance demonstrated that a Generic PUS-C model could be customized
and extended for a specific mission. The result of this customization is, amongst others, an ASN.1
definition of the Space-Ground interface. From this definition, the ASN1SCC compiler is able to
generate encoders and decoders for the OBSW and for the test environment, but also the ICD in HTML
representation.

At the other end of the communication link lies the Ground Facility, with legacy products such as
SCOS2000 or more recent ones such as the EGS-CC. In order to communicate with the Space
Segment, the Ground Segment has to be configured with the very same TM/TC description as the
Space Segment. As today, there is however no direct formal link between the ASN.1 definition and the
SCOS2000 Database. These are two different kind of formalisms. On one hand, we have a textual
definition supported by a Domain Specific Language. On the other hand, we have a pure Relational
Database schema. Is it possible to bridge the gap?

The proposed solution is to capture a decorated version of the ASN1SCC Abstract Syntax Tree (AST)
in a model that contains all the information regarding the TM/TC structure and representation. This
information is the as the one used to generate the encoders and decoders software and the interface
documents. However, the ASN.1 description only covers the structure and representation while the
SRDB contains additional information such as calibrations, ground monitoring and display information.
The AST model has therefore to be integrated in a larger model that allows capturing this additional
information while, for each TM/TC, it shall refer to the AST elements, including fields data type, size
and (variable) offset.

A chain of model transformations can then lower the representation into a relational database. During
the transformation, all the intermediate models are verified according to constraints and mission specific
naming conventions are generated. The user’s comment in the PUS-C Gen ASN1 TM/TC definition can
even be automatically flown down into the description of the corresponding field in the SCOS2000
display.

The processing involves model to model transformation through three levels of models: Domains
Models, a single Unified Model and Implementations Models. Such a chain of processing is common
inside a single tool. What is introduced here is the Unified Model that leverage tools interoperability.
The intend of this Unified Model is not to have again one single universal (and complex) model that
suggest/enforce a combination of notations and tools. It is to have a light modeling environment allowing
small teams to customize the tools they already master to their needs.

Domains models are specific to one aspect of a system (system decomposition and interfaces,
behavior, data representation,…).

Front-end tools first analyze these Domain Specific Models, providing their contributions to the
customized Unified Model. These tools are Graphical or Textual DSL Editors. Most of them are

supported by ‘Solvers’ that generate a solution according to domain constraints. Examples of such tools
are: DSL compilers for ASN1, SDL, AADL languages or modeling environment for UML, Matlab,
Simulink

The Unified model then puts in relation and extend the output from the previous processing in a common
and general purpose modeling environment based on interchange XML files. Cross model validations
are then performed.

This Unified model is then lowered in different Implementation models using M2M
transformations. Software artefacts are then emitted from Implementation models using final M2T
transformations. Examples of such implementation artefacts are: SW or HW configuration tables,
technical documentation, relational databases, inter-operability interfaces or FPGA bitfiles, …

With this approach, the SRDB content is, by construction, congruent with the OBSW. All this information
is generated from a single high-level source of information, through a trustable chain, reducing system
integration and validation effort.

Dominique TORETTE
SPACEBEL

CoCoSim: an automated analysis framework
for Simulink/Stateflow ∗

Applying V&V techniques for safety requirement on Simulink/Stateflow models.

Hamza Bourbouh†‡ Guillaume Brat‡ Pierre-Loïc Garoche§

Abstract
Performing verification and validation (V&V) early
in the development cycle of critical systems can help
reduce the cost and time of detecting and fixing er-
rors. Thus, performing V&V at the design level
helps eliminate potential problems before the soft-
ware is fully implemented. Our objective is to en-
able the verification of Simulink (a graphical data-
flow modeling language widely used in the design of
flight control systems) models with respect to for-
mal properties that represent system requirements.
In this paper, we present the CoCoSim toolbox: an
open source framework for specifying and verifying
user-defined requirements on Simulink models. The
open architecture of the tool enables the integration
of multiple analyses (ours and promising ones in the
research community for instance) in a bid to truly
enable the application of formal verification meth-
ods to Simulink/Stateflow models.
We believe that model-based system engineering

combined with tools supporting both code develop-
ment and V&V activities could make a huge impact
on the fast development of space systems. In addi-
tion, the open-source feature of the framework eases
the integration of state of the art tools and methods
from academia, enabling their uses by the industry
practionner.

1 Introduction
1.1 Context
Safety-critical systems design requires a thorough
development process including formal verification
and correct by construction behaviour. In that
area, Model-Based Design has been widely used
for software development. Such an approach of-
fers the refinement of a system from High Level Re-

∗The work was partially supported by projects ANR-
17-CE25-0018 and NASA Contracts No. NNX14AI09G and
NNA14AA60C.
†KBR Inc.
‡NASA Ames Research Center
§ENAC, Université de Toulouse, France

quirements down to the embedded code while hav-
ing an executable model at different stages. Mat-
lab/Simulink1 from MathWorks, is a de facto
model-based design standard in industry, offering
verification and code generation means.
Nonetheless, other development frameworks are

used in addition in some industries, such as aero-
nautic, railways or space. Indeed, control/com-
mand applications have received a particular atten-
tion over the years and several synchronous pro-
gramming languages such as Esterel [1], Lustre
[7] or Signal [15] have been defined to help their de-
sign. Scade [9] is an industrial and DO 178C qual-
ified Lustre-based framework that provides strong
guarantees and proofs well appreciated, in particu-
lar for certification.
Offering frameworks linking Simulink and syn-

chronous approaches is thus appealing. CoCoSim
belongs to this category as it is an open source tool
that translates Simulink specification in Lustre
while preserving semantics and providing many as-
sociated traceability or test capabilities.
This paper gives a brief overview of the Co-

CoSim architecture and its current capabilities.
While Simulink models are more general and could
manipulate both continuous time and discrete time
systems, their semantics is not as formally defined
as it is for a language such as Lustre. In our
work we restrict Lustre to the discrete-time sub-
set of Simulink constructs, which is a reasonable
assumption when considering models that will be
auto-coded into embedded devices.

2 Overview of CoCoSim
CoCoSim is a highly automated frame-
work for verification and code generation of
Simulink/Stateflow models. It consists of
an open architecture, allowing the integration of
different analyses. CoCoSim is structured as a
compiler, sequencing a series of translation steps
leading, eventually to either the production of

1https://www.mathworks.com/products/simulink.html

1

source code, or to the call to a verification tool.
By design, each phase is highly parametrizable
through an API and could then be used for different
purposes depending on the customization. The
Figure 1 outlines the different steps.

Figure 1: CoCoSim framework

2.1 Formal semantic

CoCoSim provides a formal semantic of a well
defined subset of Simulink/Stateflow blocks.
This formal representation will permit the use of
formal verification methods and code generation.

CoCoSim starts first by simplifying some com-
plex blocks into a set of basic blocks. Then an
internal representation of the model is generated
containing all information needed for code genera-
tion. Based on the work of Caspi et al. [6], Gene-
Auto [13, 16] and P [3] projects, CoCoSim trans-
lates modularly the pre-processed mono-periodic
Simulink model into an equivalent Lustre model.
The generated Lustre model has the same hierar-
chy as the original Simulink model and preserves
the initial semantic.

CoCoSim is customizable and configurable.
Indeed, it supports most of frequently used
Simulink blocks libraries (around 100 blocks) and
new blocks can be easily supported.

2.2 Supported analyses

Once a formal representation of Simulink model is
generated, CoCoSim is connected to a set of ex-
ternal tools to provide code generation, formal ver-
ification or test case generation. The toolchain is
highly automated as all the steps of verification
or code generation are automated.
The external tools are introduced and linked to

the platform in a very generic way. While Co-
CoSim is built mainly around a specified set of
tools, additional ones can be easily locally linked
or even distributed as extensions.
All CoCoSim analyses are performed on the

compiled artifact and the results are expressed back
at Simulink level thanks to traceability informa-
tion. We sketch here the features of the connected

tools. At the current moment all tools are open-
source and freely available. It scales well with
large models, therefore various verification tech-
niques and compositional reasoning can be used.

Formal Verification: SMT-based model check-
ing Once requirements have been expressed using
CoCoSim library and attached to the Simulink
model, different tools can perform SMT-based
model checking and check their validity. In case
the property supplied is falsified, CoCoSim pro-
vides means to simulate the counterexample trace in
the Simulink environment. Currently, CoCoSim
is connected to Kind2 [8] a powerful tool that imple-
ment multiple algorithms including k-induction [14]
and IC3/PDR [4] as well as on-the-fly invariant gen-
eration. All of these can be performed with various
SMT solvers: CVC4, Z3, Yices.

Code generation: Some of CoCoSim backends
provide code generation. Eg. LustreC [12] is an im-
plementation of the modular compilation scheme [2]
used in Scade. It preserves the hierarchy of the
initial model, easing the checking of traceability be-
tween Lustre and generated C code.

Test cases generation: CoCoSim generates test
cases based on two different methods. In the first
method a coverage criteria such as MC-DC is used.
The second approach relies on the notion of mu-
tants. A good test suite distinguishes valid program
from mutants.

3 Experiments
Since we started this effort of applying Lustre-level
analyses to Simulink models, we have had the op-
portunity to evaluate the approach and the ap-
plicability of CoCoSim on reasonably large ex-
amples. Among them the NASA Transport Class
Model (TCM) [5], the model describing the at-
titude and orbital control system (AOCS) of the
Space Shuttle, the nominal mode of the AOCS
of a French scientific satellite (DEMETER) or on
other industry-provided examples such as publicly
available2 Lockheed Martin Cyber Physical Sys-
tems (LMCPS) challenges [10, 11] which is a set of
aerospace-inspired examples provided as text doc-
uments specifying the requirements along with as-
sociated Simulink models. Examples range from a
basic integrator to complex autopilots. The com-
plete case study and analysis results are presented
in our technical report.3

2https://github.com/hbourbouh/lm_challenges
3https://drive.google.com/drive/u/1/folders/

1GsKiu_O9_0SK_5XcLZZefi6g9MDAe0CC

2

https://drive.google.com/drive/u/1/folders/1GsKiu_O9_0SK_5XcLZZefi6g9MDAe0CC
https://drive.google.com/drive/u/1/folders/1GsKiu_O9_0SK_5XcLZZefi6g9MDAe0CC

References
[1] Gérard Berry and Georges Gonthier. “The Es-

terel synchronous programming language: design,
semantics, implementation”. In: Science of Com-
puter Programming 19.2 (1992), pp. 87–152. issn:
0167-6423.

[2] Dariusz Biernacki, Jean-Louis Colaço, Grégoire
Hamon, and Marc Pouzet. “Clock-directed modu-
lar code generation for synchronous data-flow lan-
guages”. In: LCTES’08. 2008.

[3] Matteo Bordin, Tonu Naks, Marc Pantel, and
Andres Toom. “Compiling heterogeneous models:
motivations and challenges”. In: Proceedings of the
6th International Congress Embedded Real Time
Software (ERTS’12). 2012.

[4] Aaron R. Bradley. “IC3 and beyond: Incremental,
Inductive Verification”. In: CAV’12. 2012.

[5] Guillaume Brat, David H. Bushnell, Misty
Davies, Dimitra Giannakopoulou, Falk Howar,
and Temesghen Kahsai. “Verifying the Safety of
a Flight-Critical System”. In: FM 2015: Formal
Methods - 20th International Symposium, Oslo,
Norway, June 24-26, 2015, Proceedings. 2015,
pp. 308–324.

[6] Paul Caspi, Adrian Curic, Aude Maignan, Chris-
tos Sofronis, and Stavros Tripakis. “Translat-
ing Discrete-Time Simulink to Lustre”. In: Third
International Conference on Embedded Software
EMSOFT. 2003, pp. 84–99.

[7] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs,
and John Plaice. “Lustre: A Declarative Lan-
guage for Programming Synchronous Systems”.
In: POPL’87. 1987, pp. 178–188.

[8] Adrien Champion, Alain Mebsout, Christoph
Sticksel, and Cesare Tinelli. “The Kind 2 Model
Checker”. In: Computer Aided Verification - 28th
International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part
II. 2016, pp. 510–517.

[9] Jean-Louis Colaço, Bruno Pagano, and Marc
Pouzet. “SCADE 6: A formal language for em-
bedded critical software development (invited pa-
per)”. In: 11th International Symposium on The-
oretical Aspects of Software Engineering, TASE
2017, Sophia Antipolis, France, September 13-15,
2017. 2017, pp. 1–11.

[10] Chris Elliott. “An Example Set of Cyber-Physical
V&V Challenges for S5, Lockheed Martin Skunk
Works”. In: Safe & Secure Systems and Software
Symposium (S5), 12-14 July 2016, Dayton, Ohio.
Ed. by Air Force Research Laboratory. 2016.

[11] Chris Elliott. “On Example Models and Chal-
lenges Ahead for the Evaluation of Complex
Cyber-Physical Systems with State of the Art
Formal Methods V&V, Lockheed Martin Skunk
Works”. In: Safe & Secure Systems and Software
Symposium (S5), 9-11 July 2015, Dayton, Ohio.
Ed. by Air Force Research Laboratory. 2015.

[12] Pierre-Loïc Garoche, Temesghen Kahsai, and
Xavier Thirioux. LustreC. https://github.com/
coco-team/lustrec.

[13] Ana-Elena Rugina, David Thomas, Xavier Olive,
and G. Veran. “Gene-Auto: Automatic Software
Code Generation for Real-Time Embedded Sys-
tems”. In: Proceedings of DASIA 2008 Data Sys-
tems In Aerospace. 2008.

[14] Mary Sheeran, Satnam Singh, and Gunnar Stål-
marck. “Checking Safety Properties Using Induc-
tion and a SAT-Solver”. In: FMCAD’00. 2000,
pp. 127–144. isbn: 978-3-540-40922-9.

[15] “Synchronous programming with events and re-
lations: the SIGNAL language and its seman-
tics”. In: Science of Computer Programming 16.2
(1991), pp. 103–149. issn: 0167-6423.

[16] Andres Toom, Tonu Naks, Marc Pantel, M Gan-
driau, and Indrawati. “Gene-Auto: an Automatic
Code Generator for a safe subset of Simulink/S-
tateflow and Scicos”. In: Proceedings of the 4th
International Congress Embedded Real Time Soft-
ware (ERTS’08). 2008.

3

https://github.com/coco-team/lustrec
https://github.com/coco-team/lustrec

BabyMOD, a Collaborative Model Editor for
Mastering Model Complexity in MBSE

Nicolas Hili, Patrick Farail
IRT Saint Exupéry, 3 Rue Tarfaya, CS 34436, 31400 Toulouse, France

{nicolas.hili, patrick.farail}@irt-saintexupery.com

Abstract—Modelling is nowadays commonly practiced by sys-
tem architects. However, it remains a difficult task that requires
some advanced User Interface (UI) modelling tools to ease the
design of large-scale models. BabyMOD is an interactive and
collaborative model editor for mastering model complexity in
system engineering. It combines three objectives: visualizing
models of systems imported from authoring tools ; reviewing
imported models through model annotations ; and editing existing
models or creating new models from scratch. In this paper, we
present a work-in-progress prototype and discusses some original
features, including sketch recognition and enhanced visualization
through auto-layout and animation.

Keywords—System Engineering, Model-Driven Engineering,
Model-Based System Engineering, Interactive Whiteboards.

I. MOTIVATION

Despite its proved modeling value in many engineering
domains, Computer-Aided Design (CAD) tools have
only a moderate acceptance by system engineers
and architects to assist them in their day-to-day
tasks [Robertson and Radcliffe, 2009]. The complexity
of creating, editing, and annotating models of system
engineering takes its root from different sources: unsuitable
representations, outdated interfaces, laborious modification,
and difficult collaboration [Rudin, 2019].

As a result, especially in the early development phases,
system architects tend to favor more traditional tools, such as
whiteboards, paper, and pencils, over CAD tools to quickly and
easily sketch a problem and its solution. Among the different
benefits of remaining with traditional tools, whiteboards foster
collaboration and creativity as the users do not need to strictly
conform to a formal notation.

A common pitfall for using traditional tools, however, is
that human users are required to reproduce any sketched
solutions inside formal tools when it comes to formalizing
them. Modern post-WIMP1 interfaces (e.g., electronic white-
boards) could help to automatize this task by allowing users
working on a digital representation of the model that can
be directly exported to be modified via modelling tools.
Bridging the informality of the working sketches captured on
interactive whiteboards with formal notations and represen-
tations, has the potential to lower the barrier of acceptance
of CAD tools by the industry [Botre and Sandbhor, 2013],
[Alblawi et al., 2019]. This acceptance can be obtained by au-
tomatically or semi-automatically translating informal sketches
into their corresponding elements using a specified formal
notation.

1Windows, mouse, and pointer interfaces.

In this paper, we present BabyMOD, a web-based model
editor featuring a lighweight and intuitive interface for edit-
ing and annotating models of systems in a collaborative
way. BabyMOD positions itself between interactive electronic
whiteboards for sketching diagrams and model editors. As
such, it shares common similarities with other academic and
industrial projects, such as OctoUML [Jolak et al., 2016],
[Vesin et al., 2017] and MyScript [MyScript, 2020], but it
also distinguishes itself from them on various points, includ-
ing its language-agnostic sketch recognition assistant and its
editing and visualization capabilities.

II. BABYMOD OVERVIEW

BabyMOD (see Fig. 1) is a web-based multi-modal model
editor that has been developped from the ground to adapt
itself on different devices equipped with modern browsers.
It can run not only on traditional devices, including laptops
and PCs, but also on tablets equipped with active stylus, and
large multi-touch screens. As such, it intends to cover a large
spectrum of scenarios, from single-user modelling to multi-
user collaborative reviewing.

BabyMOD targets three main objectives: visualizing models
imported from authoring tools, editing the imported mod-
els, and reviewing them through model annotations. Minor
changes to the imported models can be carried out directly
in BabyMOD, but most of the cases, heavier changes will be
carried out inside the authoring tools (e.g., Capella). As such,
BabyMOD does not intend to replace existing authoring tools
(e.g., Capella), but rather complement them with enhanced
visualization and interaction features.

Fig. 1. BabyMOD running on a multi-touch screen where two users are
collaboratively editing a functional model.

Fig. 2. Overview of the BabyMOD interface: a model explorer (left-side) allows the user to explore the model hierarchically while a graphical editor (right-
side) allows him/her to visualize it and to edit it in a freeform way. Model element’s properties can be edited through virtual on-screen keyboard and voice
recognition.

The originality in BabyMOD lies in its sketch recognition
assistant that allows multiple users to edit or annotate models
in a free-form modelling way by sketching elements on an
interactive whiteboard (see Fig. 1). Sketch recognition is
performed in real-time or on-demand and provides the user
with explicable outputs in the form of a selection of choices.

Finally, BabyMOD supports basic editing features, allowing
users to add new model elements into the model, remove exist-
ing model elements, and modify model element’s properties.
A screen cast of our current implementation and the different
features it provides is available online.2

III. IMPLEMENTATION

We implemented BabyMOD using Web technologies
(JavaScript and HTML5), standardized Web APIs, and open
source third-party libraries, so that it makes it easer to deploy
it and to run it on different devices without any prior set-
up. The core element is the interface (see Fig. 2) that mainly
consists of i) a Canvas-based area for visualizing and editing
models graphically ; and ii) a model explorer to display models
hierarchically. Fig. 3 shows the architecture of BabyMOD.
Besides the core element, BabyMOD relies on different as-
sistants, including sketch and text recognition assistants to
recognise hand drawn model elements, a virtual keyboard,
an auto-layout algorithm to efficiently render models, and an
assistant to import models from existing tools.

2https://youtu.be/VRSxZr0VjKQ

BabyMOD

Core

Text
recognition

Sketch
recognition

Voice assistant

Auto-layout
assistant

Voice
recognition

Speech
synthesis

Tesseract OCR

Eclipse Layout
Kernel (ELK)

Web speech API
(via native Geko)

Model import
assistant

Legend:

BabyMOD
components

Third-party
libraries Dependencies

Virtual
keyboard

TeePee model
aggregator

Fig. 3. Overview of the BabyMOD architecture: model import capabilities
rely on the TeePee model aggregator [Baclet, 2019a].

Fig. 4. Overview of the recognition approach [Albore and Hili, 2020]: first,
elementary shapes from a partial draw are recognised and characterised ;
Second, a planner compares the characterised elements againts a set of goals ;
Third, the planner provides te user with explicable suggestions.

A. Sketch and Text Recognition Assistants
We implemented our sketch recognition assistant based

on an approach of automated Artifical Intelligence
(AI) planning [Ghallab et al., 2004] called Plan
Recognition [Ramı́rez and Geffner, 2009], that consists,
given an initial state and a plan, in recognising the most
probable goals to reach. We adapted this approach to our
domain where the initial state represents a partial draw on the
interactive whiteboard initiated by a user, and a goal library
describes the set of possible solutions in the form of model
elements the user may want to draw. Fig. 4 illustrates the
plan recognition approach. Details of the approach and an
initial implementation are given in [Albore and Hili, 2020].

In addition to the sketch recognition assistant, text recogni-
tion, virtual on-screen keyboard, and voice recognition assis-
tants are provided to the users to edit the different properties
of model elements (e.g., the name of a function). The text and
voice recognition assistants respectively rely on the Tesseract
open source Optical Character Recognition (OCR) engine3 and
the standardized Web speech API4 available in most recent
web browsers. The virtual keyboard is available by the user
after selecting a model element in the editor. Voice recognition
can be used in different languages and the user may optionally
modify the output of the voice recognition assistant using
the virtual keyboard if the result is unsatisfactory due to
environmental noise or wrong pronunciation.

B. Model Representation and Auto-Layout
BabyMOD supports one type of graphical representation

of models as graphs, i.e., graphical representation composed
of nodes (possibly hierarchical) and links connecting nodes
(directly or through their ports). To efficiently display graph
models on the screen, BabyMOD uses Eclipse Layout Kernel
(ELK) to automatically position model elements in an optimal
way preventing model elements from overlapping and effi-
ciently routing the different links between the model elements.

3https://github.com/tesseract-ocr/tesseract
4https://developer.mozilla.org/en-US/docs/Web/API/Web Speech API

Auto-layout is complemented with animation to progressively
show the result of the application of a new layout so that users
are not confused by a sudden change of their models.

C. Model Import Assistant

BabyMOD relies on prior results obtained in the MOISE
project conducted at IRT Saint Exupéry [Baclet, 2019a].
TeePee is a model aggregator with import capabilities to import
fragments of models from various off-the-shelf modelling
editors (Capella, Cameo Systems Modeler, . . .) and documents
(Excel spreadsheets) and aggregate them in the context of
Extended Enterprises (EEs) [Baclet, 2019b]. TeePee relies
on an internal data representation called SEIM5 to provide
a unified representation of models imported from various
sources. Fig. 5 illustrates the model import capabilities using
TeePee. First, TeePee converts the model into SEIM, then
the model can be visualized and edited within BabyMOD.
Exporting back the model into the authoring tools is currently
not implemented and is a planned activity.

As only an abstract representation of a model is imported
into BabyMOD, BabyMOD cannot carry specific changes
requiring to have the full knowledge of the internal modelling
language of every off-the-shelf editor. One benefit, however, is
that users can efficiently focus on editing and reviewing tasks
without being distracted by manipulating intricate concepts
from the source modelling languages.

Fig. 5. Illustration of the model import facility using the TeePee model
aggregator [Baclet, 2019a] for a Capella model. TeePee supports models from
different sources, including Capella (melodymodeller files), Cameo Systems
Modeler (Teamwork Cloud), Excel (spreadsheet files), etc.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented BabyMOD, a work-in-progress
tool for collaboratively visualizing, editing, and annotating
models of system engineering. BabyMOD is a preparatory
work for EasyMOD, an IRT Saint Exupéry project planned
to start in 2021. EasyMOD extends the perimeter of Baby-
MOD with: i) multi-site collaboration; ii) support for different
types of model representations ; iii) a better integration of
modelling assistants – including text and voice recognition –,
multi-language modelling, incremental formalization ; and iv)
workflow management system integration for model review.

5Systems Engineering Information Model

REFERENCES

[Alblawi et al., 2019] Alblawi, A., Nawab, M., and Alsayyari, A. (2019). A
system engineering approach in orienting traditional engineering towards
modern engineering. In 2019 IEEE Global Engineering Education Con-
ference (EDUCON), pages 1559–1567. IEEE.

[Albore and Hili, 2020] Albore, A. and Hili, N. (2020). From Informal
Sketches to System Engineering Models using AI Plan Recognition. In
AAAI 2020 Spring Symposium Series.

[Baclet, 2019a] Baclet, J. (2019a). Digital Continuity for MBSE – MOISE
Project. In 13th European Conference on Software Architecture (ECSA).

[Baclet, 2019b] Baclet, J. (2019b). Model-Based Systems Engineering in an
Extended Enterprise. In SAE 2019 AeroTech Europe.

[Botre and Sandbhor, 2013] Botre, R. and Sandbhor, S. (2013). Using
Interactive Workspaces for Construction Data Utilization and Coordina-
tion. International Journal of Construction Engineering and Management,
2(3):62–69.

[Ghallab et al., 2004] Ghallab, M., Nau, D., and Traverso, P. (2004). Auto-
mated Planning: theory and practice. Elsevier.

[Jolak et al., 2016] Jolak, R., Vesin, B., Isaksson, M., and Chaudron, M. R.
(2016). Towards a new generation of software design environments:

Supporting the use of informal and formal notations with octouml. In
HuFaMo@ MoDELS, pages 3–10.

[MyScript, 2020] MyScript (2020). Myscript home page.
https://www.myscript.com/. Accessed: 2020-01-15.

[Ramı́rez and Geffner, 2009] Ramı́rez, M. and Geffner, H. (2009). Plan
recognition as planning. In Twenty-First International Joint Conference
on Artificial Intelligence.

[Robertson and Radcliffe, 2009] Robertson, B. and Radcliffe, D. (2009).
Impact of CAD tools on creative problem solving in engineering design.
Computer-Aided Design, 41(3):136–146.

[Rudin, 2019] Rudin, C. (2019). Stop explaining black box machine learning
models for high stakes decisions and use interpretable models instead.
Nature Machine Intelligence, 1(5):206.

[Vesin et al., 2017] Vesin, B., Jolak, R., and Chaudron, M. R. (2017). Oc-
touml: an environment for exploratory and collaborative software design. In
2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pages 7–10. IEEE.

	1130 - Abstract - Model-based techniques for space microcontroller applications.pdf
	Model-based techniques for space microcontroller applications

	1500 - Abstract - Enabling Combining Models And Tools....pdf
	EXTENDED ABSTRACT

	1640 - Abstract - CoCoSim an automated analysis framework for SimulinkStateflow.pdf
	Introduction
	Context

	Overview of CoCoSim
	Formal semantic
	Supported analyses

	Experiments

