Applying MBSE across Flight and Ground on Small and Nano-Satellite Missions

Peter Mendham

September 2020

Introduction

- Space software company based in Scotland
- Selling our innovative space software products and services
 - Customers across the world
 - Working across a wide range of applications
- First mission in 2014
 - Now have 15 spacecraft flying our software
 - Majority of these also using our Mission Control Software
 - Spacecraft masses from 3kg to ~50kg
 - Many current customers are expanding to constellations
- Many more missions in development
 - At least ten more due to launch in the next year
- Customers on six continents
 - Mixture of product and services customers
- Collaborate in a number of industry-leading R&D activities
 - Commercial collaboration
 - Institutional and agency contracts (e.g. ESA)

ascensi

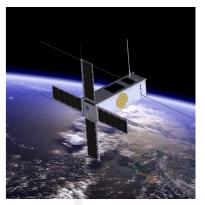
MBSE2020

Commercial context

- Rapid development times
 - 6-12 months per satellite typical
 - 1-2 years from conception to initial commercial service
- Large numbers of satellites
 - Constellations of 10-50 satellites common
- High degree of heterogeneity between satellites in a constellation
 - Different payloads, generations, degradation
- Complex payloads which embed much of their functionality in software
 - For example software defined radios and use of reprogrammable logic
- Use of COTS hardware from a wide range of vendors
 - Thriving and competitive ecosystem for products
- Need for highly automated operations
 - Typically aiming for unattended operations for a week at a time
- Use of commercial **Ground Station Network** (GSN) providers
- In response to lower cost will accept greater risk

Sept 2020

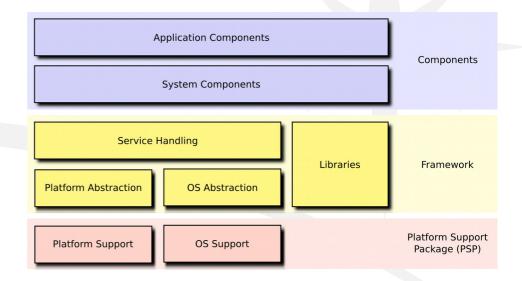
User needs


- **Availability** ٠
 - Software must be available early (at least partially) to support test
- Flexibility ٠
 - Requirements change as design is iterated
- Rapidity
 - Overall schedule is short and software must be ready quickly
- Capability •
 - Many spacecraft functions are implemented in software
- Operability
 - Software must make it easy to achieve mission goals
- Reliability
 - Software is mission-critical and must be robust
- **Scalability** ۰
 - Flight and ground software must integrate to form part of a complete system •
 - May include multiple spacecraft and/or flight computers •

ascensio

GenerationOne technology

- Model-based software engineering
 - Machine comprehension of software architecture
 - Tools to assist with software development and product/quality assurance;
- Component-based software engineering
 - Reuse of software across a wide range of scenarios and applications
 - Combines software with its documentation and tests within libraries
- Service-oriented architecture
 - Consistent and well-defined semantics for component interactions at all levels
 - Enables low-level aspects of the system to be expressed as components
 - Improves operability


GenerationOne is

- A meta-model
- A language-independent set of service and protocol definitions
- Cross platform tools and framework implementations for target platforms
- Technology applied to both flight and ground software

Applying GenerationOne

- GenerationOne **runtime architecture** uses a lightweight framework
- Almost the entire software system can be expressed as **components**
 - Applications
 - Data handling
 - Communications protocols
 - Hardware drivers
- Backed up by a range of tools
 - Model handling and exchange
 - Code generation
 - Documentation generation
- Applied to flight software
 - Clanguage
 - RTOS or Linux
- Applied to ground software
 - Java and Python
- **Single model** used to represent complete flight-ground system

MBSE2020

6/16

ascens

MBSE with GenerationOne

- Focus of GenerationOne model is **software architecture**
 - No representation of behaviour (e.g. no state machines etc.)
 - Best meets the needs of our target market
- Model captures functional elements of the system and interactions
 - Functional elements = components
 - Major functional interactions = services
 - Services concept permits both static and dynamic services binding/addressing
- Use of components permits management of software reuse
 - Product-oriented approach
- Model is general enough to capture both flight and ground concepts
 - Including real-time concepts for onboard software where applicable
 - Ground/flight usage differs primarily in how dynamic the system is
- Model is intended to be used across the life-cycle
 - From early prototyping through to operations and EoL
 - Permits rapid and easy **adaptation to change**
 - **Configuration effort** and maintenance significantly reduced

7/16

Evolution of GenerationOne

ascensi

- GenerationOne as it is now was **not designed up-front**
 - Has evolved over time on the basis of mission experience
 - Continues to evolve now, and will in the future
 - We see this as a key strength of the technology
- Technologies such as GenerationOne rely on careful use of abstraction
 - Good abstractions make the overall system/process more efficient
 - Can only be designed from experience with a large sample of requirements
 - Always best tested in practice
- We introduce new features into GenerationOne and use them internally
 - Released into the product once they have been mission-proven
- Important part of process has been experience on ESA CubeSat missions
 - Such as **QARMAN** and **PICASSO**
- Missions which require significant mission-specific work result in change
 - "Shift the envelope" of missions that can be handled
 - Improve the applicability and capabilities of the product
- All missions are approached in terms of the product

Example missions: KIPP and CASE

- Pair of communications satellites
 - Customer is Kepler Communications
 - Satellite manufacturer was AAC Clyde Space
- Target delivery of Internet-of-Things services
 - Ku- and Ka-Band
 - Up to 100Mbps
- 3U CubeSats mass of 3-4kg each
- Single payload
 - Reconfigurable FPGA-based
- Platform responsible for payload management
 - Including FPGA reconfiguration
- Major payload functionality is a black box to the platform

9/16

Example missions: Faraday-1

- Hosted payload mission
 - Flies multiple payloads for different customers
 - Intended to be the first of a series

10/16

- Satellite integrator and service provider is In-Space Missions
- Six payloads
 - Including four software defined radios
- 6U CubeSat
 - Around 10kg mass
- Highly distributed onboard systems
 - Total of six compute platforms on board
 - Two platform OBCs running an RTOS
 - Four SDRs running Linux
 - SDRs capable of running multiple software payloads
- Demanding mission with many operational modes

Sept 2020

Mission development workflow

- Development process begins with the **concept of operations**
 - Drives the requirements on how the mission should be operated
 - Operations-led focus drives flight and ground requirements simultaneously
- Allows selection of hardware and elements such as communications
- Development is typically iterative
 - Starts with initial software image based purely of **library components**
 - Usually deployed onto a development flatsat at this point
 - Can be used for payload development and testing
 - Incorporate end-to-end testing involving ground software from the start
- Per-mission development focussed on two areas
 - Selection and configuration of components from libraries
 - Development of mission-level orchestration components
- For most missions the majority of software comes from library components
 - These can be configured and are not modified for the mission
 - Maintaining the **separation and integrity of the product** is important

11/16

ascensi

Use of GenerationOne for KIPP and CASE

- Overall development of the satellites was 8 months
 - Well-known platform
 - New payload unspecified at project kick off
 - Payload development during this time also
- Software development was 6 months of effort over 5 months duration
- New software component developments for
 - Payload interfacing and management
 - Mission orchestration (e.g. mode management)
- Both spacecraft launched in 2018
 - Operating successfully since launch
 - Delivering a commercial service
- Customer responsible for operations
 - Model developed during spacecraft manufacture passed to customer

ascensi

12/16

• Permits rapid configuration of the Mission Control Software

Use of GenerationOne for Faraday-1

- Distributed system with multiple "software payloads"
 - Complete system included 13 different software images
- Involved the expansion and evolution of the product to accommodate
 - Better support for distributed systems
 - New platform and protocol support
 - Expanded model concepts and handling
- Complete flight-ground system captured as a single model
 - Including all flight computers
- Can accommodate different elements changing during flight
 - To accommodate software payload changeover
- Physical payloads use standard protocol which allows them to be modelled
 - Conceptually part of the overall system
- Development was long (2 years) but many lessons learned
 - Have been successfully applied to a number of more recent missions
- Launch failure in July 2020 re-flight scheduled for 2021

13/16

Benefits of a flight/ground approach

- The spacelink is a **highly inefficient** place to put a major system division
 - Especially a commercial/programmatic division
- Results in
 - Poor architecture
 - Poor maintainability
 - Inefficient development process
 - Inefficient operations
- Technical environments and challenges for flight/ground are different
 - But system must work together to deliver mission
 - Success of GenerationOne shown modelling as a single system is possible
 - Significant gains in efficiency, scalability and adaptability
- Remaining drivers which encourage/enforce this division not applicable
 - Commercial/industrial environment different in "New Space"
- Frees organisations to deliver missions and services **more effectively**
 - Better value for money
 - Better time to market

Sept 2020

14/16

ascensi

Future directions for GenerationOne

- Greater introduction of **operations concepts** at spacecraft development
 - Increase the extent to which development process is operations-led
- Improvements in **operability**
 - Greater range of standard services
 - Improvements to semantics of existing services
- Increase **expressiveness** in model
 - Extend service model
 - Expand range of structural types to better express reuse and similarity
 - Permit parametric re-use of portions of the architecture
- Expanded range of tools for model handling
 - Will be introducing some GUI-based tools
- Provide "pure" ports of GenerationOne to Java and Python
 - Current implementations are partial
 - Need further work to align with current GenerationOne state-of-the-art
- Expand the range of available **platforms and components**

Speak to us

Question, comments or suggestions

Bright Ascension Ltd

www.brightascension.com enquiries@brightascension.com +44 (0) 1382 602041

