
Applying MBSE across Flight and
Ground on Small and Nano-Satellite

Missions

Peter Mendham

September 2020

Sept 2020 MBSE2020 2/16

Introduction

● Space software company based in Scotland
● Selling our innovative space software products and services

● Customers across the world
● Working across a wide range of applications

● First mission in 2014
● Now have 15 spacecraft flying our software
● Majority of these also using our Mission Control Software
● Spacecraft masses from 3kg to ~50kg
● Many current customers are expanding to constellations

● Many more missions in development
● At least ten more due to launch in the next year

● Customers on six continents
● Mixture of product and services customers

● Collaborate in a number of industry-leading R&D activities
● Commercial collaboration
● Institutional and agency contracts (e.g. ESA)

Sept 2020 MBSE2020 3/16

Commercial context

● Rapid development times
● 6-12 months per satellite typical
● 1-2 years from conception to initial commercial service

● Large numbers of satellites
● Constellations of 10-50 satellites common

● High degree of heterogeneity between satellites in a constellation
● Different payloads, generations, degradation

● Complex payloads which embed much of their functionality in software
● For example software defined radios and use of reprogrammable logic

● Use of COTS hardware from a wide range of vendors
● Thriving and competitive ecosystem for products

● Need for highly automated operations
● Typically aiming for unattended operations for a week at a time

● Use of commercial Ground Station Network (GSN) providers

● In response to lower cost will accept greater risk

Sept 2020 MBSE2020 4/16

User needs

● Availability
● Software must be available early (at least partially) to support test

● Flexibility
● Requirements change as design is iterated

● Rapidity
● Overall schedule is short and software must be ready quickly

● Capability
● Many spacecraft functions are implemented in software

● Operability
● Software must make it easy to achieve mission goals

● Reliability
● Software is mission-critical and must be robust

● Scalability
● Flight and ground software must integrate to form part of a complete system
● May include multiple spacecraft and/or flight computers

Sept 2020 MBSE2020 5/16

GenerationOne technology

● Model-based software engineering
● Machine comprehension of software architecture
● Tools to assist with software development and product/quality assurance;

● Component-based software engineering
● Reuse of software across a wide range of scenarios and applications
● Combines software with its documentation and tests within libraries

● Service-oriented architecture
● Consistent and well-defined semantics for component interactions at all levels
● Enables low-level aspects of the system to be expressed as components
● Improves operability

● GenerationOne is
● A meta-model
● A language-independent set of service and protocol definitions
● Cross platform tools and framework implementations for target platforms

● Technology applied to both flight and ground software

Sept 2020 MBSE2020 6/16

Applying GenerationOne

● GenerationOne runtime architecture uses a lightweight framework
● Almost the entire software system can be expressed as components

● Applications
● Data handling
● Communications protocols
● Hardware drivers

● Backed up by a range of tools
● Model handling and exchange
● Code generation
● Documentation generation

● Applied to flight software
● C language
● RTOS or Linux

● Applied to ground software
● Java and Python

● Single model used to represent complete flight-ground system

Sept 2020 MBSE2020 7/16

MBSE with GenerationOne

● Focus of GenerationOne model is software architecture
● No representation of behaviour (e.g. no state machines etc.)
● Best meets the needs of our target market

● Model captures functional elements of the system and interactions
● Functional elements = components
● Major functional interactions = services
● Services concept permits both static and dynamic services binding/addressing

● Use of components permits management of software reuse
● Product-oriented approach

● Model is general enough to capture both flight and ground concepts
● Including real-time concepts for onboard software where applicable
● Ground/flight usage differs primarily in how dynamic the system is

● Model is intended to be used across the life-cycle
● From early prototyping through to operations and EoL
● Permits rapid and easy adaptation to change
● Configuration effort and maintenance significantly reduced

Sept 2020 MBSE2020 8/16

Evolution of GenerationOne

● GenerationOne as it is now was not designed up-front
● Has evolved over time on the basis of mission experience
● Continues to evolve now, and will in the future
● We see this as a key strength of the technology

● Technologies such as GenerationOne rely on careful use of abstraction
● Good abstractions make the overall system/process more efficient
● Can only be designed from experience with a large sample of requirements
● Always best tested in practice

● We introduce new features into GenerationOne and use them internally
● Released into the product once they have been mission-proven

● Important part of process has been experience on ESA CubeSat missions
● Such as QARMAN and PICASSO

● Missions which require significant mission-specific work result in change
● “Shift the envelope” of missions that can be handled
● Improve the applicability and capabilities of the product

● All missions are approached in terms of the product

Sept 2020 MBSE2020 9/16

Example missions: KIPP and CASE

● Pair of communications satellites
● Customer is Kepler Communications
● Satellite manufacturer was AAC Clyde Space

● Target delivery of Internet-of-Things services
● Ku- and Ka-Band
● Up to 100Mbps

● 3U CubeSats – mass of 3-4kg each
● Single payload

● Reconfigurable FPGA-based
● Platform responsible for payload management

● Including FPGA reconfiguration
● Major payload functionality is a black box to the platform

Sept 2020 MBSE2020 10/16

Example missions: Faraday-1

● Hosted payload mission
● Flies multiple payloads for different customers
● Intended to be the first of a series

● Satellite integrator and service provider is In-Space Missions
● Six payloads

● Including four software defined radios
● 6U CubeSat

● Around 10kg mass
● Highly distributed onboard systems

● Total of six compute platforms on board
● Two platform OBCs running an RTOS
● Four SDRs running Linux
● SDRs capable of running multiple software payloads

● Demanding mission with many operational modes

Sept 2020 MBSE2020 11/16

Mission development workflow

● Development process begins with the concept of operations
● Drives the requirements on how the mission should be operated
● Operations-led focus drives flight and ground requirements simultaneously

● Allows selection of hardware and elements such as communications
● Development is typically iterative

● Starts with initial software image based purely of library components
● Usually deployed onto a development flatsat at this point
● Can be used for payload development and testing
● Incorporate end-to-end testing involving ground software from the start

● Per-mission development focussed on two areas
● Selection and configuration of components from libraries
● Development of mission-level orchestration components

● For most missions the majority of software comes from library components
● These can be configured and are not modified for the mission
● Maintaining the separation and integrity of the product is important

Sept 2020 MBSE2020 12/16

Use of GenerationOne for KIPP and CASE

● Overall development of the satellites was 8 months
● Well-known platform
● New payload – unspecified at project kick off
● Payload development during this time also

● Software development was 6 months of effort over 5 months duration
● New software component developments for

● Payload interfacing and management
● Mission orchestration (e.g. mode management)

● Both spacecraft launched in 2018
● Operating successfully since launch
● Delivering a commercial service

● Customer responsible for operations
● Model developed during spacecraft manufacture passed to customer
● Permits rapid configuration of the Mission Control Software

Sept 2020 MBSE2020 13/16

Use of GenerationOne for Faraday-1

● Distributed system with multiple “software payloads”
● Complete system included 13 different software images

● Involved the expansion and evolution of the product to accommodate
● Better support for distributed systems
● New platform and protocol support
● Expanded model concepts and handling

● Complete flight-ground system captured as a single model
● Including all flight computers

● Can accommodate different elements changing during flight
● To accommodate software payload changeover

● Physical payloads use standard protocol which allows them to be modelled
● Conceptually part of the overall system

● Development was long (2 years) but many lessons learned
● Have been successfully applied to a number of more recent missions

● Launch failure in July 2020 – re-flight scheduled for 2021

Sept 2020 MBSE2020 14/16

Benefits of a flight/ground approach

● The spacelink is a highly inefficient place to put a major system division
● Especially a commercial/programmatic division

● Results in
● Poor architecture
● Poor maintainability
● Inefficient development process
● Inefficient operations

● Technical environments and challenges for flight/ground are different
● But system must work together to deliver mission
● Success of GenerationOne shown modelling as a single system is possible
● Significant gains in efficiency, scalability and adaptability

● Remaining drivers which encourage/enforce this division not applicable
● Commercial/industrial environment different in “New Space”

● Frees organisations to deliver missions and services more effectively
● Better value for money
● Better time to market

Sept 2020 MBSE2020 15/16

Future directions for GenerationOne

● Greater introduction of operations concepts at spacecraft development
● Increase the extent to which development process is operations-led

● Improvements in operability
● Greater range of standard services
● Improvements to semantics of existing services

● Increase expressiveness in model
● Extend service model
● Expand range of structural types to better express reuse and similarity
● Permit parametric re-use of portions of the architecture

● Expanded range of tools for model handling
● Will be introducing some GUI-based tools

● Provide “pure” ports of GenerationOne to Java and Python
● Current implementations are partial
● Need further work to align with current GenerationOne state-of-the-art

● Expand the range of available platforms and components

Sept 2020 MBSE2020 16/16

Speak to us

Question, comments or suggestions

Bright Ascension Ltd
www.brightascension.com
enquiries@brightascension.com
+44 (0) 1382 602041

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

