

Applying the 'Spacecraft Early Analysis Model' to the Biomass Mission

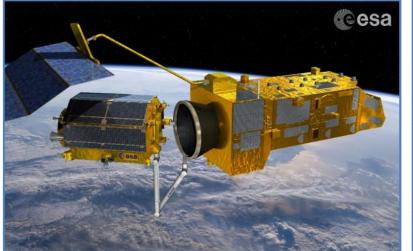
ESA MBSE Workshop 28th September 2020

Joe Gregory, Lucy Berthoud, Theo Tryfonas Ludovic Faure, Antonio Prezzavento University of Bristol, UK Airbus, UK

Contents

- 1. Previous Work
- 2. Spacecraft Early Analysis Model
- 3. Biomass Payload Deployment
- 4. ExoMars Egress from Lander

5. Summary



- 1. Previous Work
- 2. Spacecraft Early Analysis Model
- 3. Biomass Payload Deployment
- 4. ExoMars Egress from Lander
- 5. Summary

Airbus Space MBSE Projects

- eDeorbit
- Bremen, Germany
- Autonomous fail-safe reaction

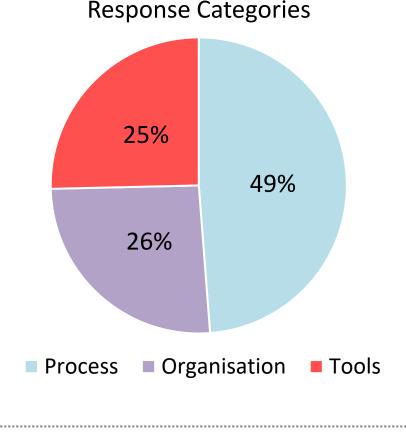
- ExoMars Rover
- Stevenage, UK
- Communication of requirements

- JUICE
- Toulouse, France
- Science data allocation

eDeorbit is the largest effort so far – methodology and model template developed

Airbus Space Interviews

Questions:


- Where are the issues with Systems Engineering?
- Where might models help?

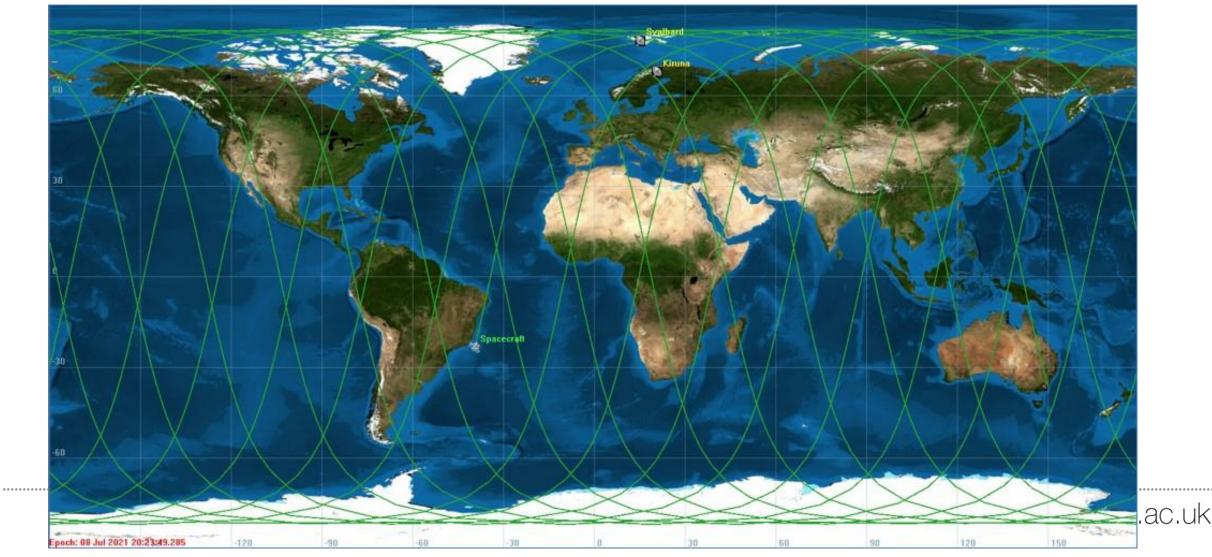
Response Themes:

- Process
- Organisation
- Tools

Topics of interest:

- Early Functional Validation (ConOps)
- Template Model Framework

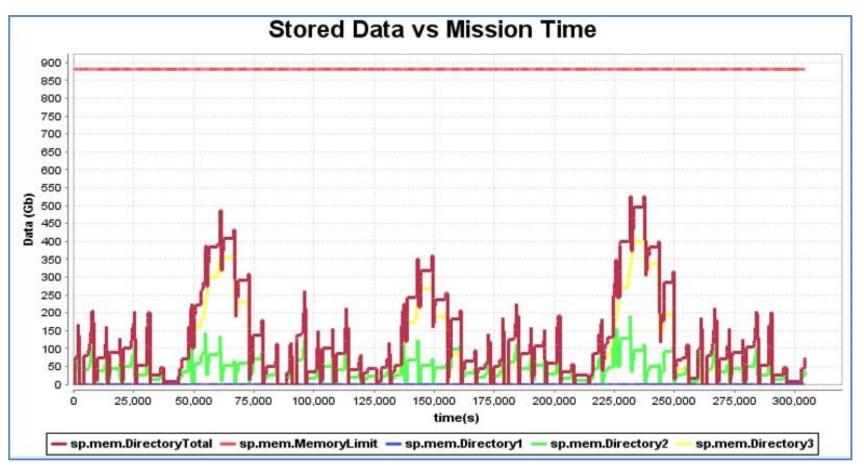
Airbus Interviews Publication


The Journal of Systems and Software 160 (2020) 110453					
ELSEVIER	Contents lists available at ScienceDirect The Journal of Systems and Software journal homepage: www.elsevier.com/locate/jss				
The long and winding road: MBSE adoption for functional avionics of spacecraft Joe Gregory ^{a,*} , Lucy Berthoud ^a , Theo Tryfonas ^b , Alain Rossignol ^c , Ludovic Faure ^d					

DOI: 10.1016/j.jss.2019.110453

J. Gregory, L. Berthoud, T. Tryfonas, A. Rossignol, and L. Faure, "The long and winding road: MBSE adoption for functional avionics of spacecraft," Journal of Systems and Software, vol. 160 (110453), 2019.

Biomass – Mass Memory Sizing



Biomass – Mass Memory Sizing

1. Simulation Demo: We demonstrated possibility of model execution

- 2. Memory allocation: We showed that the requirement was met
- 3. Optimise directory sizes: We proposed a suitable directory division

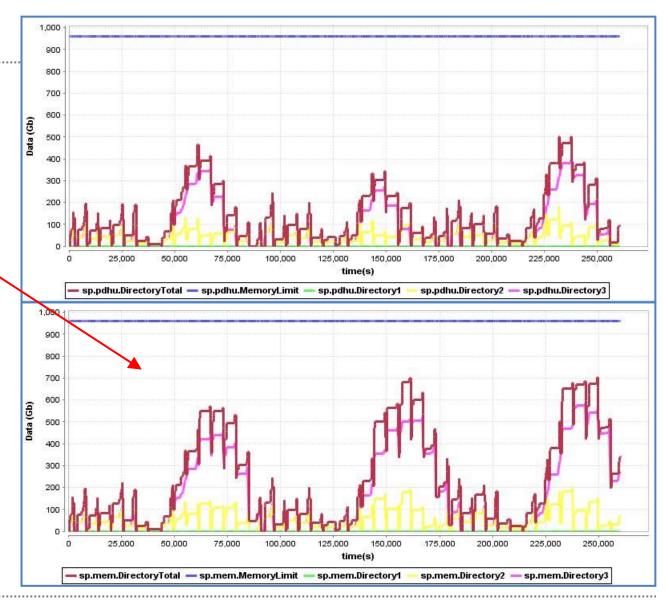
Biomass – Mass Memory Sizing

Early Validation of the Data Handling Unit of a Spacecraft Using MBSE

Joe Gregory	Lucy Berthoud	Theo Tryfonas	Antonio Prezzavento
Department of Aerospace	Department of Aerospace	Department of Civil	Airbus Defence and Space
Engineering	Engineering	Engineering	Gunnels Wood Road
Queens Building	Queens Building	Queens Building	Stevenage, UK
University Walk	University Walk	University Walk	SG12AS
University of Bristol, UK	University of Bristol, UK	University of Bristol, UK	antonio.prezzavento@airbus.
BS81TR	BS81TR	BS81TR	com
joe.gregory@bristol.ac.uk	lucy.berthoud@bristol.ac.uk	theo.tryfonas@bristol.ac.uk	

DOI: 10.1109/AERO.2019.8741767

J. Gregory, L. Berthoud, T. Tryfonas, and A. Prezzavento, "Early Validation of the Data Handling Unit of a Spacecraft Using MBSE," in *IEEE Aerospace Conference*, Big Sky, MT, 2019.

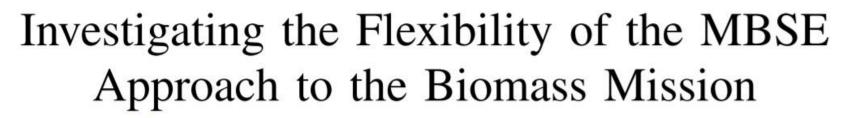


Biomass – Mass Memory Sizing

How flexible / adaptable is the model to:

- 1. Changes to the requirements?
- 2. Changes to the functional behaviour?
- 3. Change to the logical architecture?
- 4. Contingency Analysis
- 5. Mission Updated

The model introduces flexibility into the system definition. But work is needed to streamline the process



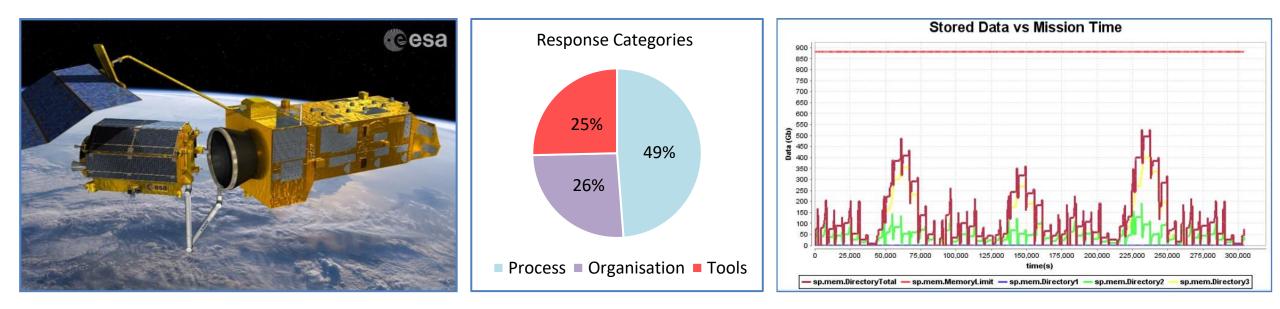
Biomass – Mass Memory Sizing

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Joe Gregory¹⁰, Lucy Berthoud, Theo Tryfonas, Antonio Prezzavento, and Ludovic Faure

DOI: <u>10.1109/TSMC.2019.295875</u>

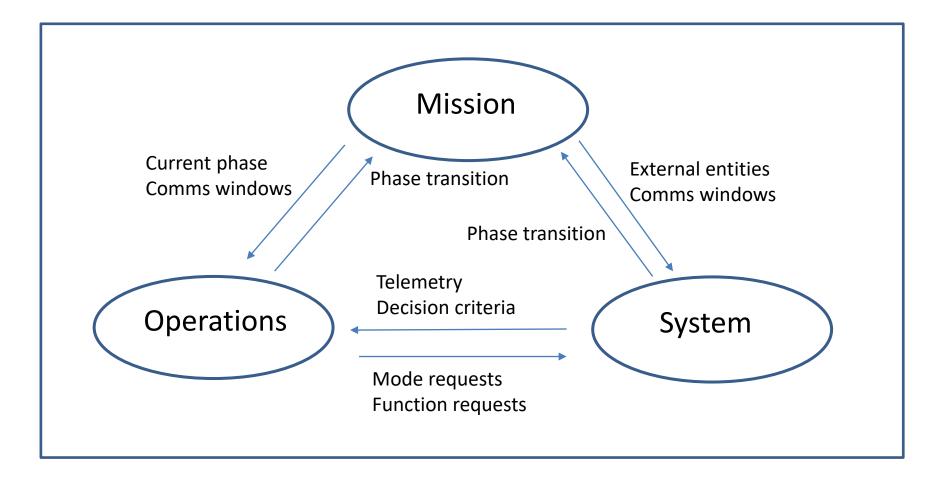
J. Gregory, L. Berthoud, T. Tryfonas, A. Prezzavento, and L. Faure, "Investigating the Flexibility of the MBSE Approach to the Biomass Mission," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019.



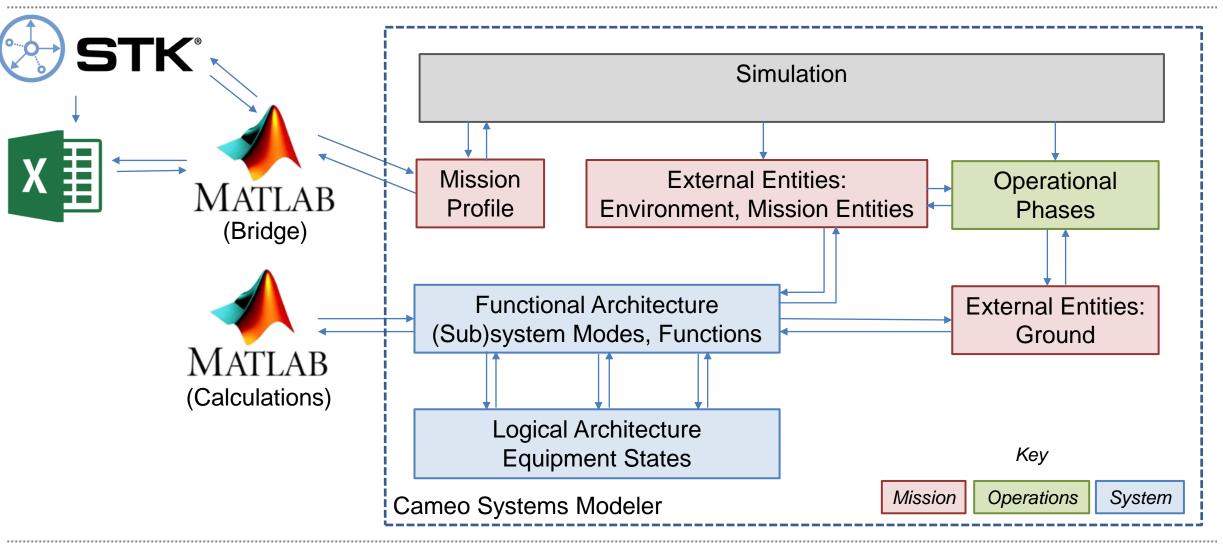
- 1. Previous Work
- 2. Spacecraft Early Analysis Model
- 3. Biomass Payload Deployment
- 4. ExoMars Egress from Lander
- 5. Summary

Spacecraft Early Analysis Model -Objectives

University of BRISTOL



- Develop a template (the SEAM) to be used for **early functional definition and analysis** of spacecraft.
- Demonstrate the flexibility of the SEAM by applying it to real space-based missions.


Spacecraft Early Analysis Model -BRISTOL Separation between M, O, S

bristol.ac.uk

Spacecraft Early Analysis Model – Interim Report

There's no 'I' in SEAM – An Interim Report on the 'Spacecraft Early Analysis Model'											
								Joe Gregory	Lucy Berthoud	Theo Tryfonas	Ludovic Faure
								Dept. of Aerospace	Dept. of Aerospace	Dept. of Civil	Airbus Defence and Space
Engineering	Engineering	Engineering	Gunnels Wood Road								
University of Bristol,	University of Bristol,	University of Bristol,	Stevenage, SG12AS								
University Walk,	University Walk,	University Walk,	UK								
Bristol, BS81TR	Bristol, BS81TR	Bristol, BS81TR	ludovic.faure@airbus.com								
UK	UK	UK	<u> </u>								
joe.gregory@bristol.ac.uk	lucy.berthoud@bristol.ac.uk	theo.tryfonas@bristol.ac.uk									

J. Gregory, L. Berthoud, T. Tryfonas, and L. Faure, "There's no 'I' in 'SEAM': An Interim Report on the 'Spacecraft Early Analysis Model'", in *IEEE Aerospace Conference*, Big Sky, MT, 2020.

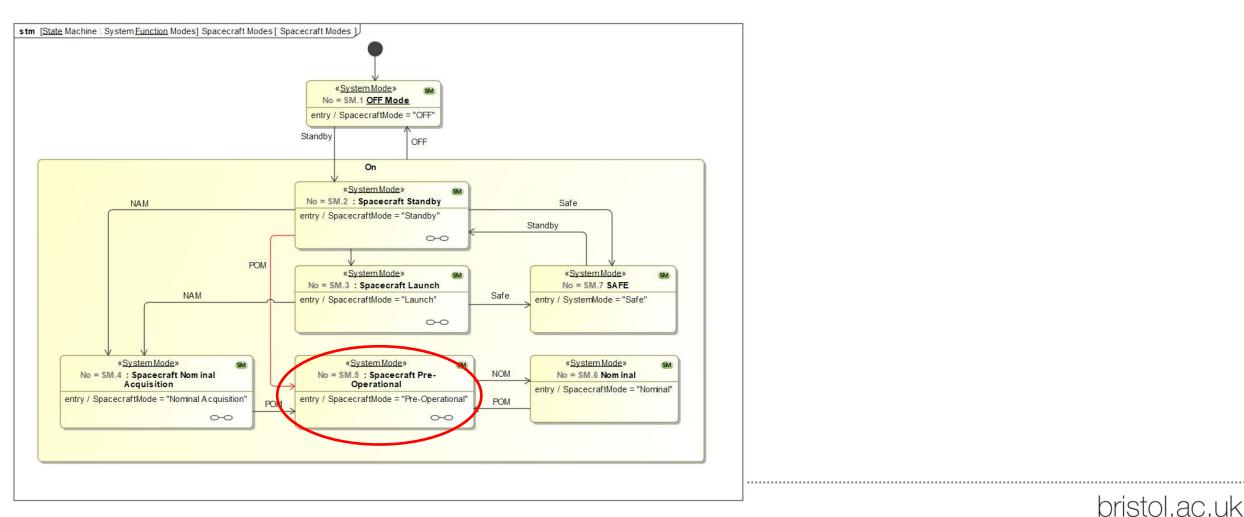
- 1. Previous Work
- 2. Spacecraft Early Analysis Model
- 3. Biomass Payload Deployment
- 4. ExoMars Egress from Lander

5. Summary

Biomass Model – Logical Architecture

dd [Block] Spacecraft[Spacecra	aft]]						
			«block» Spacecraft				
SpacecraftMode : String SpacecraftActivity : String	SpacecraftMode : String						
«State Machine : System Funct	tion Modes»Spacecraft Modes		classifier behavior				
aocs	comms.,	obc ,	payload,	pdhu,	pow er,	thermal,	
«block» AOCS	«block» Com m s	«block» OBC	«block» Payload	«block» PDHU	«block» Power	«block» Therm al	
values A OCSMode : String A OCSA ctivity : String	values CommsMode : String CommsActivity : String		values PayloadMode : String PayloadA ctivity : String	values PDHUMode : String PDHUA ctivity : String	values Pow erMode : String Pow erActivity : String	values ThermalMode : String ThermalA ctivity : String	
classifier behavior «statemachine»AOCS Modes	classifier behavior «statemachine»Comms Modes	classifier behavior «statemachine»OBC Modes	classifier behavior «statemachine»Payload Modes		classifier behavior «statemachine»Pow er Modes	classifier behavior «statemachine»Thermal Modes	

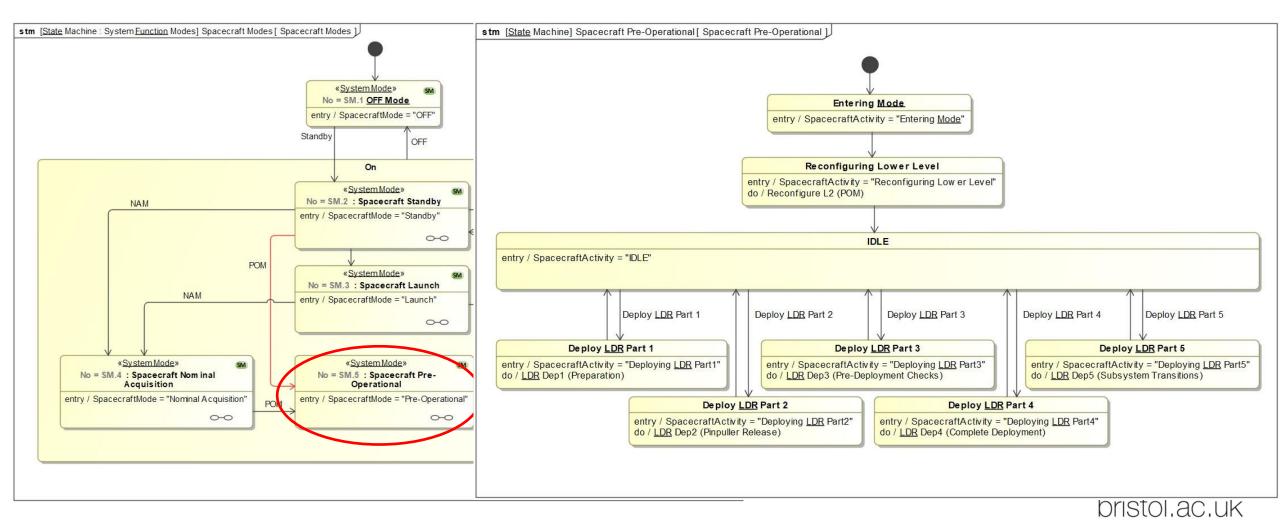
bristol.ac.uk

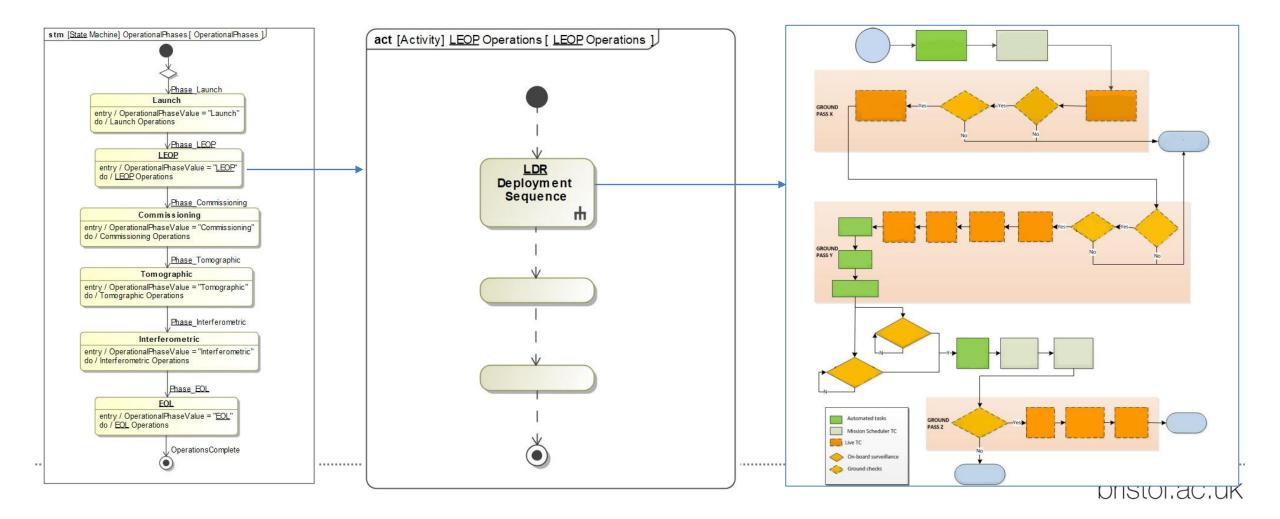


.....

Biomass Model – Functional Definition

.....




Biomass Model – Functional Definition

.....

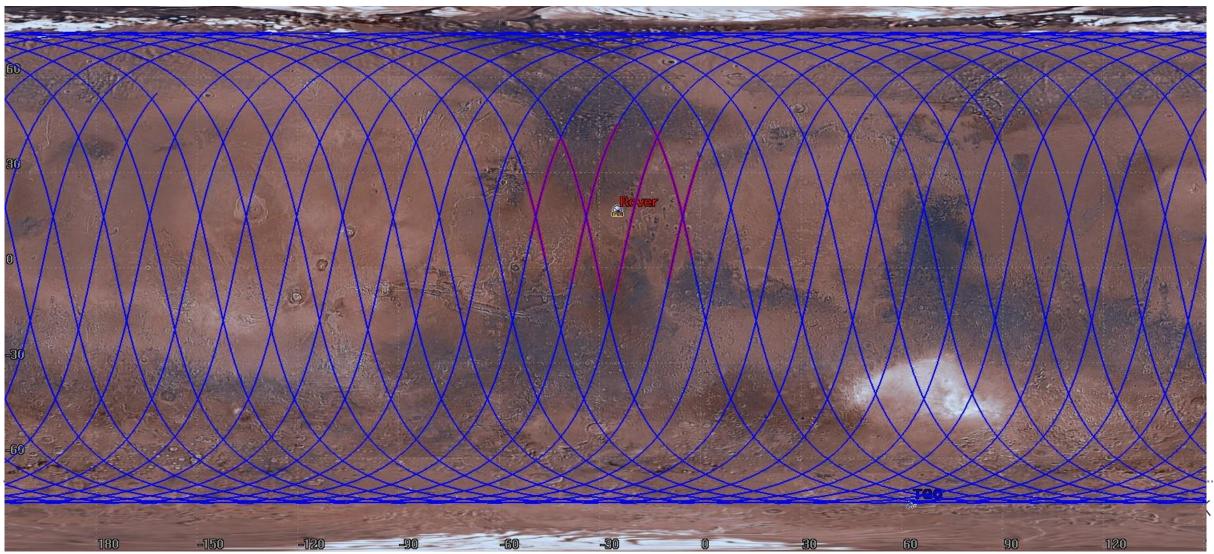
Biomass Model - Operations

Biomass Model – Results

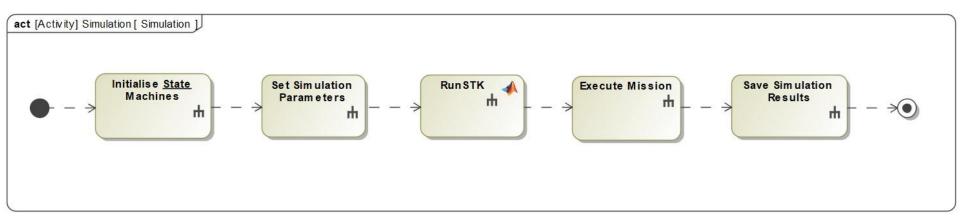
bristol.ac.uk

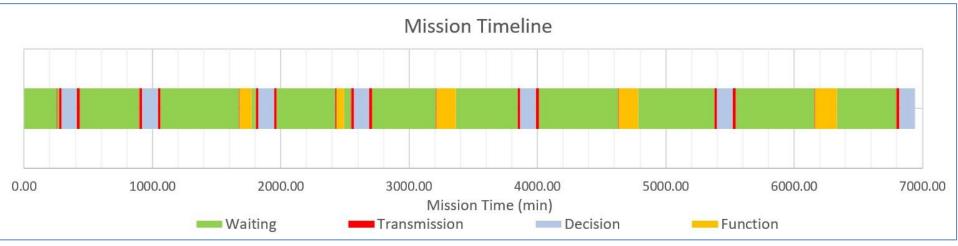
Biomass Simulation								
Biomass Simulation								
SIMULATION			SUBSYSTEM	S	ASSEMBLIES			
Filename	BiomassDeploymentModel		AOCS Mode	NM - GAP	RCS Mode	Operational	STRA Mode	Operational
MISSION TIM Waiting Time	ES (min) 175.4800			IDLE	RCS Activity	IDLE		IDLE
Transmission Time	27.6000				GNSS Mode	Operational	RWA Mode	Operational
Function Time	52.2000				GNSS Activity	IDLE	RWA Activity	IDLE
Decision Time	480.0000				SSN Mode	OFF	MTO Mode	OFF
Mission Time	735.2800				SSN Activity	IDLE	MTO Activity	IDLE
EXTERNAL EN	ITITIES				MTQ Mode	OFF		
Launcher	Separated				MTQ Activity	IDLE		
Sun	InView		Comms Mode	Operational	S-Band TT&C Mode	Operational		
GROUND STA	TIONS	TC TM	Comms Activity	IDLE	S-Band TT&C Activity	IDLE		
Svalbard	IDLE 0	2	OBC Mode		RDIU Mode	0	Clock Mode	
Kiruna	IDLE 1			Operational	RDIU Activity	Operational IDLE	Clock Mode Clock Activity	Operational
Troll	IDLE 2	0	OBC ACTIVITY	IDLE	Processor Mode	Operational	CIOCK ACTIVITY	
ESOC	Routing TC				Processor Activity	IDLE		
SPACECRAFT					-			
Operational Phase	LEOP		Payload Mode	Standby	LDR Boom Mode	Operational	Shire House	OFF
Spacecraft Mode	Pre-Operational		Payload Activity	IDLE	LDR Boom Activity LDR Reflector Mode	IDLE	SAR Activity	
Spacecraft Activity	IDLE				LDR Reflector Activity	OFF	MCA Mode	Operational
								IDLE
			PDHU Mode	Operational	Directory1 Mode	Operational	Directory3 Mode	Operational
		828) 1 10	PDHU Activity	IDLE	Directory1 Activity	IDLE		IDLE
		a ta ba a ta			Directory2 Mode Directory2 Activity	Operational	XDA Mode	Operational
		in a second				IDLE	XDA Activity	IDLE
			Power Mode	Operational	Battery Mode	Operational	PCDU Mode	Operational
			Power Activity	IDLE	Battery Activity	IDLE	PCDU Activity	IDLE
					SAA Mode	Operational		
· /					SAA Activity	IDLE		
			Thermal Mode	Operational	Therm. Assy Mode	OFF	Heater Assy Mode	Operational
9. 3.			Thermal Activity	IDLE	Therm. Assy Activity	IDLE	Heater Assy Activity	IDLE

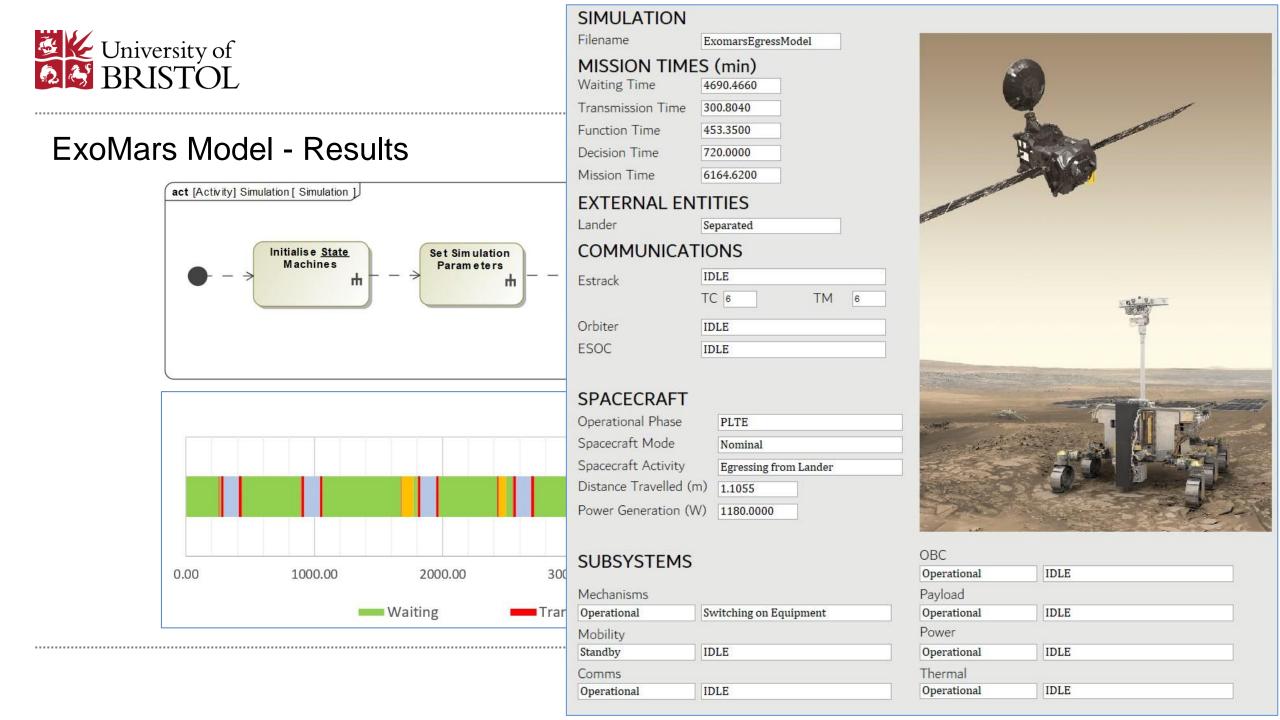
×



- 1. Previous Work
- 2. Spacecraft Early Analysis Model
- 3. Biomass Payload Deployment
- 4. ExoMars Egress from Lander
- 5. Summary


ExoMars Model - STK



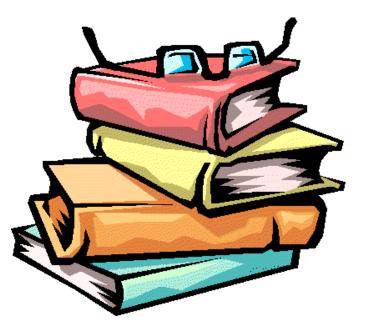


ExoMars Model - Results

bristol.ac.uk

- 1. Previous Work
- 2. Spacecraft Early Analysis Model
- 3. Biomass Payload Deployment
- 4. ExoMars Egress from Lander

5. Summary


University of BRISTOL

Separation between **Descriptive** and **Analytical** aspects of the model is crucial

Separation between **Mission**, **Operations** and **System** introduces flexibility in definition and analysis

- does not prescribe system behaviour

Application to multiple missions and use cases can demonstrate flexibility

Summary

- Interviews within Airbus indicated:
 - we should focus on 'Early Functional Validation' against 'Concept of Operations' we should develop a 'Model Template'
- MBSE techniques have been applied to three case studies:
 - 1. Biomass, Mass Memory Sizing (previous work)
 - 2. Biomass, Payload Deployment Sequence
 - 3. ExoMars, Egress from Lander Sequence
- V A model-based framework, the 'Spacecraft Early Analysis Model' has been developed
 - This links CSM, MATLAB, Excel, STK to define and simulate system behaviour
 - Development of the SEAM Guide and SEAM Ontology is ongoing

Thank you for listening

Questions / Feedback gratefully received!

joe.gregory@bristol.ac.uk

